

Staple!

Sets and Logic
MHF3202SeLo-makeup-B
Prof. JLF King
Touch: 30Sep2019

Ord: _____

B1: _____ 45pts
B2: _____ 45pts
B3: _____ 105pts

Total: _____ 195pts

Print name: Ord: _____

B1: *Essay, on your own paper, triple-spaced:* Please prove:
THM: For each posint K there exists $N \in \mathbb{Z}_+$ st. each
number $N+1, N+2, \dots, N+K$ is composite.**B2:** *Essay, on your own paper, triple-spaced:* Please prove:
THM: For each posint L , if $M_L := 2^L - 1$ is prime, then L is prime. [Hint: Contrapositive. Suppose $L = b \cdot c$ for some $b, c \in [2.. \infty)$. Construct a factorization of $M_L = \beta \cdot \gamma$ which is non-trivial. Don't forget to show that $\beta, \gamma \neq 1$, and both are positive. Oh, and that β and γ are *integers*.]**B3:** Show no work.
Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq$ Empty-word.**a** Using *only* symbols $\mathbf{H}, \mathbf{D}, \wedge, \vee, \neg, \mathbf{T}, \mathbf{F}, [,]$,
rewrite (in simplest form) expression $C \Rightarrow [\neg B \Rightarrow C]$
as Ditto,
rewrite $[B \Rightarrow C] \Rightarrow C$ as**b** Rewrite $y \in [G \cap \bigcup_{k \in B} H_k]$ without \cup, \cap , by using
only \exists st. $\forall : \in \exists \vee \wedge$ [$x F G k B$],
as**c** LBolt: $\text{GCD}(70, 42) = \cdot 70 + \cdot 42$.
So (LBolt again) $G := \text{GCD}(70, 42, 35) = \cdot 70 + \cdot 42 + \cdot 35 = G$.**d+** Let $B := 132, M := 112, T := 12$. Congruence $B \cdot x \equiv_M T$ has
reduced congruence $\beta \cdot y \equiv_\mu \tau$, where $\beta =$,
 $\mu =$, $\tau =$, and soln $y = \in [0.. \mu]$.Congruence $B \cdot x \equiv_M T$, has many solns, which
are $x = \in [0.. M]$.**e** $\tau([45]^7) =$ and $\sigma([45]^7) =$.
And Euler $\varphi(55 \cdot 12100) =$.
Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$ HONOR CODE: "I have neither requested nor received
help on this exam other than from my professor."

Signature: