

Hello. Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

Write **rational numbers** as fractions: E.g. $\frac{1}{2}$ and $1/3$, but not 0.5 nor $0.3333\dots$; **use fractions**.

B1: Show no work.

a Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. Circle one:

True! Yes! wH'at S a?sEnTENcE

c DE $[\mathcal{N}(x, y) \cdot \frac{dy}{dx}] + \mathcal{M}(x, y) = 0$ is *exact*, where

$$\mathcal{N}(x, y) := x + 2y \quad \text{and} \quad \mathcal{M}(x, y) := 5 + y.$$

Its soln $y = y(x)$ satisfies $\mathbf{F}(x, y(x)) = \text{Const}$, where $\mathbf{F}(x, y) =$

d DE $[2xy \cdot \frac{dy}{dx}] + [2 + 3x]y^2 = 0$ is not, alas, *exact*. Happily, multiplying both sides by (non-constant) fnc

$$W(x) =$$

gives a *new* DE which is exact. Did you *Check*?

e A soln to $[f'' - 3f'](x) = -[4x+3]$ is **polynomial** $f(x) =$. Using parameters α and β , then, the *general* solution to $[h'' - 3h'](x) = -[4x+3]$ is

$$h_{\alpha, \beta}(x) =$$

And the h with $h(0) = 0$ and $h'(0) = 0$ is $h(x) =$

f Matrix-product $\begin{bmatrix} 7 & 3 \\ 8 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 3 \\ -2 & 1 \end{bmatrix} =$

With $\mathbf{A} := \begin{bmatrix} 7 & 3 \\ 8 & 4 \end{bmatrix}$, then the $(2, 1)$ -entry of \mathbf{A}^{-1} is

OYOP: In grammatical English *sentences*, write your essays on every *third* line (usually), so that I can easily write between the lines.

B2: Brine with $5 \frac{\text{lb}}{\text{gal}}$ salt flows at rate $1 \frac{\text{gal}}{\text{min}}$ into a tank that initially held 100gal of $2 \frac{\text{lb}}{\text{gal}}$ -salt brine. The tank is well-mixed, and brine is flowing *out* at rate $3 \frac{\text{gal}}{\text{min}}$. So the tank will empty in

minutes.

At time t , let $\sigma(t)$ denote the tank-salinity [in lb/gal] and use $y(t)$ for the total number of pounds of salt in the tank.

Explain how to derive a DE for $y()$. Don't just pull a DE out of the air; **explain**, using *Text* and *Pictures*, how it comes from the physical situation. Now re-write the DE in linear-DE form. Use FOLDE to solve the DE. Dividing by the amount of water in the tank at time t , gives this formula for the salinity:

$$\sigma(t) = \left[\dots \right] \frac{\text{lb}}{\text{gal}}.$$

As the tank approaches empty, its salinity approaches $\left[\dots \right] \frac{\text{lb}}{\text{gal}}$. Do Not approximate.

End of B-Makeup

B1: _____ 110pts

B2: _____ 75pts

Total: _____ 185pts

Please *PRINT* your **name** and **ordinal**. Ta:

Ord:

.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature:

.....