

Definitions. Say that two integers p and q (not both zero) are **relatively prime**, written $p \perp q$, if $\text{Gcd}\{p, q\}$ is 1. A rational $\frac{p}{q}$ is in **LCTerms** (lowest common terms) if $p \perp q$.

A rational number x is a **dyadic rational** if, in LCTerms, it is $p/2^n$, with $p \in \mathbb{Z}$ and n a natnum. Thus each integer k is dyadic, since $k = k/2^0$. Also $\frac{-17}{32}$ and $\frac{5}{10}$ are dyadic rationals, but $\frac{1}{10}$ is not, and neither is π nor $\sqrt{32}$. Use **cty** and **discty** to abbreviate “continuity” and “discontinuity”.

Suppose that B is a set of reals (such as an interval) and we have a function $f: B \rightarrow \mathbb{R}$. Let $\text{Cty}(f)$ denote the set of $x \in B$ at which f is continuous. Let $\text{DisCty}(f)$ denote the set of $x \in B$ at which f is discontinuous.

For a set $S \subset \mathbb{R}$, let $\mathbf{1}_S$ denote the “**indicator function** of S ”: For $x \in \mathbb{R} \setminus S$, then, $\mathbf{1}_S(x) := 0$. And $\mathbf{1}_S(x) := 1$, for x in S .

Advice. Carefully follow the writing style described on *The Checklist*. Print a copy of your essay(s) each day, so that you always have a paper copy. Each team member is responsible to understand everything that the team hands in.

a1: Fix two arbitrary sequences **a** and **b**. Define

$$P(N) := a_N b_0 + a_{N-1} b_1 + a_{N-2} b_2 + \cdots + a_0 b_N$$

and

$$\begin{aligned} Q(N) := & a_0 \cdot [b_0 + \cdots + b_{N-1} + b_N] \\ & + [a_1 - a_0] \cdot [b_0 + \cdots + b_{N-1}] \\ & + [a_2 - a_1] \cdot [b_0 + \cdots + b_{N-2}] \\ & + [a_3 - a_2] \cdot [b_0 + \cdots + b_{N-3}] \\ & \vdots \\ & + [a_{N-1} - a_{N-2}] \cdot [b_0 + b_1] \\ & + [a_N - a_{N-1}] \cdot b_0. \end{aligned}$$

Use induction on N to prove the summation formula $P(N) = Q(N)$, for $N = 0, 1, 2, \dots$.

a2: Show no work for this problem. (No partial credit.) Each function below is $\mathbb{R} \rightarrow \mathbb{R}$.

a Let S be the set of reals $\{\frac{n+1}{n}\}_{n=1}^{\infty}$. Then $\text{DisCty}(\mathbf{1}_S) = \underline{\dots \dots \dots}$.

b $\text{Cty}(\mathbf{1}_{\mathbb{Q}}) = \underline{\dots \dots \dots}$.

a3: Let $\mathbb{D} \subset \mathbb{Q}$ be the set of **dyadic rationals**. Define the **ruler function** $\mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}$ by:

$$\mathbf{r}(x) := \begin{cases} \frac{1}{q} & \text{if } x \in \mathbb{D} \text{ and } x = \frac{p}{q} \text{ in LCTerms;} \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{D}. \end{cases}$$

Thus $\mathbf{r}(0) = 1$ and $\mathbf{r}(\frac{-6}{64}) = \frac{1}{32}$ and $\mathbf{r}(\frac{1}{3}) = 0$ and $\mathbf{r}(\pi) = 0$.

Prove that \mathbf{r} is discontinuous at x IFF x is a dyadic rational. In particular, for each dyadic P , give a “**witness** of discty of $\mathbf{r}()$ at P ”. I.e, give a *particular* positive number $\varepsilon := \text{Formula}(P)$ and sequence $\mathbf{x} := \text{Formula}(P)$, such that

$$\forall n: |\mathbf{r}(x_n) - \mathbf{r}(P)| \geq \varepsilon,$$

yet $\lim(\mathbf{x})$ equals P .

a4: Give an example of a sequence **b** of **integers**, so that for each positive integer L , there is a list $(n_k)_{k=1}^{\infty}$ so that $\lim_{k \rightarrow \infty} b_{n_k}$ equals L .

a5: Create an interesting AdvCalc problem, then carefully solve it. (I may put such a problem on the next exam.) Also acceptable: Pick a new interesting problem from the text, and solve it.