

Note. Fill in the blanks. You need show no work for question α -6.

α 6: a Give two integers $p, q \geq 2$, neither prime, so that $p \perp q$: $p = \underline{\hspace{2cm}}$ & $q = \underline{\hspace{2cm}}$.

b Consider $x \mapsto \sqrt[3]{5x+2}$ as a map $\mathbb{R} \rightarrow \mathbb{R}$. Let φ be its inverse function. Then

$$\varphi(y) = \underline{\hspace{2cm}}.$$

c Give a formula for a particular $f: (2, 3] \rightarrow \mathbb{R}$ which is *continuous*, but is not uniformly continuous. $f(x) := \underline{\hspace{2cm}}.$

d Define function ψ on $\mathbb{R} \setminus \{0\}$ by

$$\psi(z) := \sin\left(\frac{1}{z}\right) + 2\cos(z).$$

Then

$$\limsup_{z \rightarrow 0} \psi(z) = \underline{\hspace{2cm}} \quad \liminf_{z \rightarrow 0} \psi(z) = \underline{\hspace{2cm}}$$

$$\limsup_{z \rightarrow +\infty} \psi(z) = \underline{\hspace{2cm}} \quad \liminf_{z \rightarrow +\infty} \psi(z) = \underline{\hspace{2cm}}$$

e Define $h: \mathbb{R} \rightarrow \mathbb{R}$ as follows: Let $h(x)$ be $x^2 - 2x + 1$, if x is irrational, and $h(x) := 4$, if x is rational. Then

$$\text{Cty}(h) = \underline{\hspace{2cm}}.$$

α 7: a Give an example of sets $D, C \subset \mathbb{R}$ and a bijection $f: D \rightarrow C$ such that f is strictly monotone and *continuous*, and yet $g := f^{-1}$ is not continuous. Draw a labeled *picture* of f , using an entire sheet of paper. Prove that f is continuous.

b Produce a particular point $P \in C$ at which g is not continuous. Produce, with proof, a witness $\varepsilon > 0$ of discontinuity of g at P .