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Semigroups & Monoids. A semigroup is a pair
(((S, •))), where • is an associative binary operation
[binop] on set S. A special case is a monoid. It
is a triple (((S, •, e))), where • is an associative binop
on S, and e ∈ S is a two-sided identity elt.

Axiomatically:

G1: Binop • is associative, i.e ∀α,β,γ ∈ S, necessar-
ily [α • β] • γ = α • [β • γ].

G2: Elt e is a two-sided identity element, i.e
∀α ∈ S: α • e = α and e • α = α.

Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-sided inverse element :
∀α, ∃β such that α • β = e and β • α = e.

When the binop is ‘+’, addition, then write the
inverse of α as α and call it “negative α”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of α as α 1 and call it the “reciprocal of α” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes αβ for α•β.

For an abstract binop ‘•’, we often write α 1 for the
inverse of α [“α inverse”], and omit the binop-symbol.
If • is commutative [∀α,β, necessarily α • β = β • α] then
we call S a commutative group.

Rings/Fields. A ring is a five-tuple (((Γ,+, 0, ·, 1)))
with these axioms.

R1: Elements 0 and 1 are distinct; 0 6= 1.

R2: Triple
(((

Γ,+, 0
)))
is a commutative group.

R3: Triple
(((

Γ, · , 1
)))
is monoid.

R4: Mult. distributes-over addition from the left,
α[x+ y] = [αx] + [αy], and from the right,
[x+ y]α = [xα] + [yα]; this, for all α,x,y ∈ Γ.

Our Γ is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When Γ is commutative: Say that α •| β [α divides
β] if there exists µ ∈ Γ s.t αµ = β. This is the same
relation as β |• α [β is a multiple of α].

Zero-divisors. Fix α ∈ Γ. Elt β ∈ Γ is a “(two-
sided) annihilator of α” if αβ = 0 = βα. An α is
a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0 · 1 = 0 = 1· 0, and
1 6= 0. We write the set of Γ–zero-divisors as

ZDΓ or ZD(Γ) .

[E.g: In the Z15 ring, note 9 6≡ 0 and 10 6≡ 0, yet 9·10 is ≡ 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Z15”.]

An α ∈ Γ is a Γ-unit if ∃β ∈ Γ st. αβ = 1 = βα.
Use

UΓ or U(Γ)

for the units group. In the special case when Γ is ZN ,
I will write ΦN for its units group, to emphasize the
relation with the Euler-phi fnc, since ϕ(N) :=

∣∣ΦN

∣∣.
[Some texts use U(N) for the ZN units group.]

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
ZDΓ = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F in which every non-zero element
is a unit [i.e U(F ) = Fr{0}] is a field. That is to say, F
is a commRing where triple

(((
Fr{0}, · , 1

)))
is a group.

Examples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z12 comprise
{±2,±3,±4, 6}.

In Z the units are ±1. But in Z12, the ring of in-
tegers mod-12, the set of units, Φ(12), is {±1,±5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z + iZ of Gaussian integers,
the units group is {±1,±i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Z12) is not cyclic. For which N is
Φ(N) cyclic?] �
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Irreducibles, Primes. Consider (((Γ,+, 0, ·, 1))), a
commutative ring♥1. An elt α ∈ Γ is a zero-divisor
[abbrev ZD] if there exists a non-zero β ∈ Γ st. αβ = 0.

In contrast, an element u ∈ Γ is a unit if ∃w ∈ Γ
st. u·w = 1. This w, written as u 1, is called the
reciprocal [or multiplicative-inverse] of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer 1a: If α divides a unit, α •| u, then α is a unit.

Exer 1b: If γ |• z with z ∈ ZD, then γ is a zero-divisor.

Exer 2: In an arbitrary ring Γ, the set ZD(Γ) is disjoint from
Units(Γ).

An element p ∈ Γ is:

i : Γ-irreducible if p is a non-unit, non-ZD, such
that for each Γ-factorization p = x·y, either x or
y is a Γ-unit. [Restating, using the definition below:
Either x≈1, y≈p, or x≈p, y≈1.]

ii : Γ-prime if p is a non-unit, non-ZD, such that for
each pair c,d ∈ Γ: If p •| [c · d] then either p •| c
or p •| d.

Associates. In a commutative ring, elts α and β
are associates, written α ≈ β , if there exists a
unit u st. β = uα. [For emphasis, we might say strong
associates.] They are weak-associates, written
α ∼ β, if α •| β and α |• β [i.e, α ∈ βΓ and β ∈ αΓ].

Ex 3: Prove Assoc ⇒ weak-Assoc.

Ex 4: If α ∼ β and α /∈ ZD, then α, β are (strong) associates.

Ex 5: In Z10, zero-divisors 2, 4 are weak-associates. [This,
since 2·2 ≡ 4 and 4·3 = 12 ≡ 2.] Are 2, 4 (strong) associates?

Ex 6: With d •| α, prove: If α is a non-ZD, then d is a non-ZD.
And: If α is a unit, then d is a unit.

1: Lemma. In a commRing♥1 Γ, each prime α is
irreducible. ♦

Proof. Consider factorization α = xy. Since α •| xy,
WLOG α •| x, i.e ∃c with αc = x. Hence

α = xy = αcy .∗:

By defn, α /∈ ZD. We may thus cancel in (∗), yielding
1 = cy. So y is a unit. �

♥1More generally, a commutative monoid.

There are rings♥2 with irreducible elements p which
are nonetheless not prime. However. . .

2: Lemma. Suppose commRing Γ satisfies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible α is prime. ♦

Pf. Suppose α •| c·d. WLOG α �r| c. Let
g := GCD(α, c). Were g ≈ α, then α •| g •| c, a con-
tradiction. Thus, since α is irreducible, our g ≈ 1.

Bézout produces S,T ∈ Γ with

1 = Sα+ Tc . Hence

d = Sαd+ Tcd = Sdα+ Tcd .∗:

By hyp, α •| cd, hence α divides RhS(∗). So α •| d.�

3: Lemma. In commRing Γ, if prime p divides product
α1 · · ·αK then p •| αj for some j. [Exer. 7] ♦

4: Prime-uniqueness thm. In commRing Γ, suppose

p1·p2·p3 · · · pK = q1·q2·q3 · · · qL

are equal products-of-primes. Then L = K and, after
permuting the p primes, each pk ≈ qk. ♦

Pf. [From Ex.4, previously, for non-ZD, relations ∼ and ≈ are
the same.] For notational simplicity, we do this in Z+,
in which case pk ≈ qk will be replaced by pk = qk.

FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L≥1. Thus
K≥1. [Otherwise, qL divides a unit, forcing qL to be a
unit; see Ex.1a.] By the preceding lemma, qL divides
some pk; WLOG qL •| pK . Thus qL = pK [since pK

is prime and qL is not a unit]. Cancelling now gives
p1·p2 · · · pK−1 = q1·q2 · · · qL−1, giving a CEX with a
smaller [K−1] + [L−1] sum. �

♥2Consider the ring, Γ, of polys with coefficients in Z12.
There, x2 − 1 factors as [x− 5][x+ 5] and as [x− 1][x+ 1].
Thus none of the four linear terms is prime. Yet each is Γ-
irreducible. (Why?) This ring Γ has zero-divisors (yuck!),
but there are natural subrings of C where Irred 6⇒Prime.
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Example where ∼ 6= ≈. Here a modification of an
example due to Irving (“Kap”) Kaplansky.

Let Ω be the ring of real-valued continuous fncs
on [ 2, 2]. Define E,D ∈ Ω by: For t ≥ 0 :

E(t) = D(t) :=

{
t− 1 if t ∈ [1, 2]

0 if t ∈ [0, 1]

}
.

And for t ≤ 0 define

E(t) := E( t) and D(t) := −D( t) .

[So E is an Even fnc; D is odD.] Note E = fD and D = fE,
where

f(t) :=


1 if t ∈ [ 1, 2]

t if t ∈ [ 1, 1]

1 if t ∈ [ 2, 1]

 .

Hence E ∼ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [ 2, 2]r {0}. Cty of g then forces g ≡ 0.]

Could there be a unit u ∈ Ω with uD = E? Well

u(2) = E(2)
D(2)

note
=== 1 , and u( 2) = E( 2)

D( 2)
note
=== 1 .

Cty of u() forces u to be zero somewhere on inter-
val ( 2, 2), hence u is not a unit. �

Addendum. By Ex.4, both E and D must be zero-
divisors. [Exer.8: Exhibit a function g∈Ω, not the zero-fnc,
such that E·g ≡ 0.] �
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Back to Semigroups/Monoids

Consider a not-nec-commutative monoid (((S, •, e))) and
an x ∈ S. An elt λ ∈ S is a “ left inverse of x” if
λ • x = e. Of course, then x is a right inverse of λ.
Use LInv/RInv for “left/right inverse”.

We will often suppress the binop-symbol and
write xy for x • y.

5: Prop’n. In a monoid (((S, •, e))):

i : For each x ∈ S: If x has at least one LInv and
one RInv, then x has a unique LInv and RInv,
and they are equal.

ii : Suppose every elt of S has a right-inverse. Then
S is a group. ♦

Proof of (i). Suppose λ is a LInv of x, and ρ a RInv.
Then

λ = λ[xρ] = [λx]ρ = ρ .

And if two LInvs, then λ1 = ρ = λ2. �

Proof of (ii). Given x ∈ S, pick a RInv r and a RInv
to r, call it y. Now

x = x • [ry] = [xr] • y = y .

Hence x is both a left and right inverse to r. So r is
a right/left inverse to x. [Now apply part (i).] �

In the next lemma, we neither assume existence of
left-identity/left-inverses, nor do we assume unique-
ness of right-identity/right-inverses.

6: Lemma. Suppose n is an associative binop on S,
and e ∈ S is a righthand-identity elt. Suppose that
each y ∈ S has a [wrt e] righthand inverse, y′. Then:

If y n y = y, then y = e.6a:
Moreover:

Each y′ is also a left inverse to y, and e is
also a lefthand-identity.

6b:

Thus (((S,n, e))) is a group, ♦

Pf (6a). Note y = y n e = y n [y n y′] = [y n y] n y′.
By hypothesis y n y = y, so the above asserts that
y = y n y′

note
=== e. �

Pf of (6b). First let’s show that every RInv, y′, of y,
is also a LInv of y. Let b := [y′ n y]. Courtesy (6a),
it is enough to show that bn b = b. And

bn b =
[
y′ n [y n y′]

]
n y , by assoc.,

=
[
y′ n e

]
n y

= y′ n y
note
=== b .

We can now show that e is also a lefthand identity.
After all, en y = [y n y′] n y = y n [y′ n y] = y n e,
since y′ is a LHInverse. I.e, en y = y. �

Terms. A general group might be written (((G, · , e)))
or (((Γ, · , ε))) or (((G, · , 1))) or (((G,+, 0))). The symbol for
the neutral [i.e, identity] element may change, accord-
ing to whether the group name is a Greek letter, or
whether the group is written multiplicatively or addi-
tively. A vectorspace might be written as (((V,+,0))) or
(((U,+,0))). A group of functions, under composition,
might be written (((G, ◦, Id))).

We may use 11 (blackboard bold ‘1’) for the trivial
group, but more often will write {e} or {0} or {1} as
appropriate.

For the N th cyclic group, use ZN or (((ZN ,+++))) when
written additively, but use YN or (((YN , ···))) when written
multiplicatively. The Klein-4 group V4, the Vier-
ergruppe , is isomorphic to Y2×Y2. [So V4 = {e, a, b, c}
is a commutative-gp with a2 = b2 = c2 = e and abc = e.]

Use SN , DN for the N th, symmetric and dihedral
groups. So |SN |=N ! and |DN |=2N and |YN |=N .

The alternating group AN is the subgroup of SN
comprised of even permutations. So |A0| = |A1| = 1;
otherwise, |AN | is N !/2. [An arbitary set Ω engenders its
symmetric group SΩ of permutations, but there is no corre-
sponding alternating group unless Ω is finite.]

When each element of G has finite order, we call G
a torsion group.

To “conjugate g by element x” means to form ex-
pression x·g·x 1. For an arbitrary exponent n ∈ Z,
note that [xgx 1]n = [xgnx 1].

The “commutator of elements α and β ” is

Jα, βK := αβα 1β 1

(which differs from [α, β], the standard notation).
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Cyclic groups

I’ll use (((ZN ,+))) when writing a cyclic group addi-
tively, but will use (((YN , ·))) when writing multiplica-
tively. The infinite group Y∞ is iso to (((Z,+))).

Defn. For x ∈ G we use PeriodsG(x) for the set of
integers k with xk = e.

For a subgroup H ⊂ G, let PH(x) = PH,G(x) be
{k ∈ Z | xk ∈ H}. So Periods(x) is simply PH(x),
when H is the trivial subgp {e}. �

7: Periods Lemma. Fix G,H, x as above, and let PH
mean PH(x). If PH is not just {0}, then PH = NZ,
where N is the least positive element of PH .

For G-subgroups H ⊃ K, then,

H-OrdG(x) •| K-OrdG(x) •| OrdG(x) . ♦

Proof. Suppose N := Min(Z+ ∩ PH) is finite. Fixing
a k ∈ PH , we will show that k |• N .

Set D := GCD(N, k). LBolt (well, Bézout’s lemma)
produces integers such that D = NS + kT . Hence
D ∈ PH , since xD equals [xN ]S · [xk]T = eS · eT .
Thus N = D •| k. �

8: Defn. Use H-Ord(x) or H-OrdG(x) for the aboveN ;
else, if PH is just {0} then H-Ord(x) :=∞. Call this
the “H-order of x” . The order of x, written Ord(x)
or OrdG(x), is simply H-OrdG(x) when H := {e}. �

Suppose H C G. Now [xH]k = xkH, so [xH]k=H
IFF x ∈ H. In terms of the quotient group,

∀x ∈ G: OrdG/H(xH) = H-OrdG(x) •| OrdG(x) .7′:

Dihedral groups

The Klein-4 group is isomorphic to Y2 ×Y2. Some-
times called the Vierergruppe, it has presentation

V :=

〈
a, b, c

∣∣∣∣ Each of {a, b, c} is an involution,
each pair commutes, and the prod-
uct of each two equals the third.

〉
.9:

Using fewer generators, but less symmetric, is this
presentation:

V =
〈
a, b

∣∣ a2 = e = b2, a� b
〉
.9′:

For each posint N , the N th dihedral group is

DN :=
〈
R, F

∣∣ F2 = e, FRFR = e, RN = e
〉

;

D∞ :=
〈
R, F

∣∣ F2 = e, FRFR = e
〉
, for N =∞.

10:

Now for some straightforward facts.

11: Fact. For all N ∈ [1 ..∞] and integers j:

Rj · F = F · R−j .

Lastly, Ord(DN ) = 2N , and Ord(D∞) = ℵ0. ♦

12: Lemma. Groups D1
∼=Y2 and D2

∼=Y2×Y2 (the
Vierergruppe), so each has full center and trivial Inn()-
group.

For each N ∈ [3 ..∞]:
Both Z(D∞) and Z(DN odd) are trivial. Conse-

quently Inn(D∞) ∼= D∞ and Inn(DN odd) ∼= DN .
When N = 2K is even: The center Z(D2K) =

{e, RK}. Consequently DK ∼= Inn(D2K) via the map

Rj 7→ JRk and FRj 7→ JFRk ,Improve this!

where k := [j mod K]. ♦

Proof. The commutator JRj , FK equals

RjFR jF 1 = R2jF2 = R2j .

Thus Rj � F IFF 2j |• N . So the only possible nt-
element in the center is RK , where N = 2K < ∞.
And RK commutes with each FRj . �

Some theorems (Lame title; I know)

Results to be proved in class.

13: Lagrange’s theorem. Suppose H is a subgroup of
finite group G. Then Ord(H) divides Ord(G). ♦

Proof.Define equiv-rel ∼ on G by α ∼ β by αβ 1 ∈ H.
Etc. �

14: Lemma. For each N ≥ 2, the full symmetric group
SN is generated by an N -cycle ν := yb0, b1, b2, . . . , bN−1

y

together with τ := yb0, b1

y

; an “adjacent” 2-cycle. ♦

Proof. WLOGenerality, N ≥ 3.
ISTShow subgroup 〈ν, τ〉 owns all transpositions.

Hence, by our argument from class, ISTJust show that
〈ν, τ〉 owns all adjacent [relative to ν] transpositions.

Finally, note that ν 1τν = yb1, b2

y

. Etc. �
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Normality

Consider two gps H ⊂ G. Say that “H is normal
inG” , writtenH C G, if [∀x ∈ G: xHx 1 = H]. This
is equivalent [see (23), below] to [∀x ∈ G: xHx 1 ⊂ H].
However, an individual element x could give proper
inclusion, as the following two examples show.
Proper inclusion, xHx 1 $ H, forces that |H| =∞

and Ord(x) =∞ and that G is not abelian.

15: E.g. Let G := SZ. Let H ⊂ G comprise those
permutations h:Z � st. [∀n < 0: h(n) = n ]; i.e, h�Z−
is the identity-fnc.

Define x ∈ G by x(n) := n−5. For n negative,

n
x7−→ n−5

h7−→ n−5
x 1

7−→ n ,†:

for an arbitrary h ∈ H. Consequently, xHx 1 ⊂ H.
Note that (†) holds for all n<5. So no elt η ∈ H

which moves something in [0 .. 5), e.g, η(2) = 3, can
possibly be in xHx 1. We have thus xHx 1 $ H,
proper inclusion. �

16: E.g. [See file.] In G := GL2(Q), the shear S := [ 1 1
0 1 ]

generates H := 〈S〉G, which is a copy of (((Z,+))). Con-
jugating by X := [ 2 0

0 1 ] produces
�� ��XSX 1 = S2 . Conse-

quently,

XHX 1 =
{

[ 1 2n
0 1 ]

∣∣∣ n ∈ Z
}
.

This is a proper subset of H. �

17: Subset-product: For subsets N,Γ ⊂ G, let NΓ
mean the set of products xα, over all x ∈ N and α ∈ Γ.
Even when N and Γ are subgroups, product NΓ need
not be a subgroup.

E.g, let R, F be the rotation and flip in G := D3.
Subgroups N := {e, F} and Γ := {e, FR} make NΓ
equal {e, F, FR, R}. This is not a group, since it does
not own R2. �

18: Lemma. If at least one of the subgroups N,Γ ⊂ G
is normal in G, then ΓN = NΓ, and this product is
itself a G-subgroup. ♦

Proof. (Use letters x, y ∈ N and α, β ∈ Γ.) WLOG N C G.
Thus x′ := βxβ 1 is an N-element. Hence βx ∈ ΓN

equals x′β. Consequently, ΓN ⊂ NΓ. By symmetry,
then, ΓN = NΓ.

Why is NΓ sealed under multiplication? Product
yβ · xα equals yx′βα

note
∈ NΓ. Finally, the inverse

element xα = α 1x 1 is in ΓN = NΓ. �

Defn. Two subgroups N,Γ ⊂ Ĝ are transverse ,
written N ⊥ Γ, if N ∩ Γ = {e}. Always, the map

f :N×Γ→NΓ , by (((x, ω))) 7→ xω,19:

is onto. It is injective IFF N and Γ are transverse.
The following result characterises direct product. �

20: Direct-product Lemma. Suppose N,Γ ⊂ Ĝ groups,
with N C Ĝ, and N ⊥ Γ. Let

G := 〈N,Γ〉
Ĝ

note
=== NΓ .

Recalling the bijection. f :N×Γ→G from (19), the
following are equivalent:

i : N� Γ, inside G.
ii : f is a homomorphism, hence isomorphism.
iii : Γ C G. ♦

Pf (i)⇒(ii). Does f respect multiplication? Checking,

f
(
(((x, α)))

)
· f
(
(((y, β)))

) def
== xα · yβ = xyαβ ,

since N� Γ. And this equals f
(
(((xy, αβ)))

)
. �

Pf (ii)⇒(iii). Always {e}×Γ C N×Γ. Now apply f . �

Pf (iii) ⇒ (i). With x ∈ N and α ∈ Γ, we need to
show that

�� ��xαx 1α 1 = e .
Note that αx 1α 1 ∈ N, since N C Ĝ. Hence

x · αx 1α 1 ∈ NN ⊂ N .

And xαx 1 ∈ Γ, since Γ C G. So xαx 1 · α 1 ∈ Γ.
Thus Jx, αK ∈ N ∩ Γ, so Jx, αK = e. �

Defn. Let SurEnd(G) denote the monoid of surjective
endomorphisms of G. Evidently
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Inn(G) ⊂ Aut(G) ⊂ SurEnd(G) ⊂ End(G) .21:

Any of these inclusions can be strict, depending on
the group.

Here are various strengthenings of the notion “H is
a normal subgroup of G”. They are defined by how
many homomorphisms ψ:G � send H into itself.

Suppose that
�� ��ψ(H) ⊂ H for every . . .

Which Homs? Then written as

. . . ψ ∈ Inn(G) H C G

. . . ψ ∈ Aut(G) H
Aut
C G

. . . ψ ∈ SurEnd(G) H
Sur
C G

. . . ψ ∈ End(G) H
End
C G

22:

23: Note. In the H C G and H
Aut
C G cases, we may

conclude that each (inner-)automorphism α in fact
gives equality

�� ��α(H) = H . This, because inclusion
ψ(H) ⊂ H must hold for both ψ := α and ψ := α 1.�

In the examples below, H,K ⊂ (((G, ·, e))) are groups.
Abbrev the normalizer N := N (H) := NG(H) and
centralizer C := C(H) := CG(H) of subgp H. �

24: E.g. Each x ∈ G engenders a conjugation map
Jx:G � by

Jx(g) := xgx 1 .

Easily Jy ◦ Jx = Jyx. Conjugations are called inner
automorphisms of G; the group of conjugations is
written Inn(G). This map

J:G�Inn(G) : x 7→ Jx25:

is a surjective gp-homomorphism. Its kernel is the
center Z(G). So Z(G) C G and

Inn(G) ∼= G
Z(G) .26:

A slight generalization, taking a subgp H, is to map

JH : NG(H)→Aut(H) : x 7→ Jx �H .25′:

Its kernel is the centralizer CG(H). So N (H)
C(H) is group-

isomorphic to the subgroup

A := Range(JH) ⊂ Aut(H) . �

27: Lemma. Suppose
∣∣G..H

∣∣ = 2. Then H C G. ♦

Pf. Pick b ∈ GrH. Since the index is 2,

[bH] tH = G = [Hb] tH .

Thus the left and right coset-partitions are equal. So
H C G. �

Remark. Index
∣∣G..H

∣∣ = 2 need not imply the stronger

H
Aut
C G. In the Vierergruppe, (??′), the 〈a〉V sub-

group has index 2 in V . Yet the automorphism that
exhanges a and b moves 〈a〉.

Also,
∣∣G..H

∣∣ = 3 is not sufficient to imply normality.
In D3, the non-normal subgp 〈F〉 has index 3. �

28: Lem. Consider groups H ⊂ G ⊂ F . Then[
H

Aut
C G

Aut
C F

]
=⇒ H

Aut
C F .29: [

H
Aut
C G C F

]
=⇒ H C F .30:

And
[
H

End
C G

End
C F

]
⇒H

End
C F . Proof. Use (23). ♦

Ques. Does [H
Sur
C G

Sur
C F ] imply H

Sur
C F? A

CEX necessarily has G infinite, since there would be
a ψ ∈ SurEnd(F ) which maps G properly inside G.�

31: Normal Grabbag.

i : For two subgps H,K of G, let
?
/ be the strongest

normality so that both H,K
?
/ G. Then the com-

mutator-subgp JH,KK
?
/ G.

ii : The center Z(G)
Sur
C G, but not necessarily

End
C .

iii : Inn(G) C Aut(G), but not necessarily
Aut
C . ♦

Pf of (i). Take an-endomorphism x 7→ x̂ of the appro-
priate type. Fix h ∈ H and k ∈ K. By hypothesis,
ĥ ∈ H and k̂ ∈ K. Thus

JH,KK 3 Jĥ, k̂K note
=== Ĵh, kK . �
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Pf of (ii). Take an onto-endomorphism x 7→ x̂ and a
point z ∈ Z(G). To show ẑ ∈ Z(G), we fix a g ∈ G
and show that gẑg 1 = e. Since the endo is surjective,
there exists an γ ∈ G such that γ̂ = g.

Now z � γ, so e = γzγ 1. Thus

e = γ̂zγ 1 = γ̂ · ẑ · γ̂ 1 = g · ẑ · g 1 . �

Pf of (ii)bis.We produce an endomorphism, of a group
G := Ω×D, which carries its center Z(G) outside of
itself. Here, Ω = {ω, ε} is an order-2 group gener-
ated by ω. And D := D3 is a dihedral group; use e
for its neutral elt. So the center of G is

Z(G) = Z(Ω)×Z(D) = Ω× {e} .

Let F be a flip in D3; it generates an order-2 subgp
{F, e} =: F ⊂ D. The Klein-4 group Ω×F has an
“exchange the generators” automorphism, A, with

A
(
(((ω, e)))

)
:= (((ε, F))) and

A
(
(((ε, F)))

)
:= (((ω, e))) .

defined by exhanging the generators of subgps Ω
and F . Finally, consider the endomorphism E:G→G
which collapses the D side:

For all α ∈ Ω and x ∈ D: E
(
(((α, x)))

)
:= (((α, e))) .

Finally, the composition E . A is a G-endo which
carries Ω×{e} to {ε}×F . �

Pf of (iii). [See file.] Note that D4 has exactly two
subgroups isomorphic to the Vierergruppe,

V := 〈R2, F〉 = {e, R2, F, FR2} and

V ′ := 〈R2, FR〉 = {e, R2, FR, FR3} .

And α(V ) = V ′, where α ∈ Aut(D4) is the automor-
phism which sends R 7→ R and F 7→ FR.

Now for the example. Let G := D4. Check that
A := Aut(D4) ∼= D4. Its subgp S := Inn(D4) ∼= D2 is
isomorphic to a Vierergruppe. One can interpret the
above α as in Aut(A), and as carrying S to the other
copy of the Vierergruppe. �

Examples of normal subgps. On D-dim’al Eu-
clidean space RD, let GTrans be the group of trans-
lations. Then GTrans is normal inside the gp of all
isometries. Indeed, GTrans is normal in the gp of in-
vertible affine maps RD �.

Proof. On V := RD, each vector κ ∈ V yields a
translation Tκ:V � by Tκ(v) := v + κ. Evidently a
linear L:V � has commutation

L ◦ Tκ = TL(κ) ◦ L .

Consequently, a general (we want “invertible”) affine map
can be written A := L ◦ T, for some linear L and trans-
lation T;

So to show GTrans normal in the affines, it is enough
to conjugate by an invertible linear map, L. Our goal
is to show that L ◦ Tκ ◦ L 1 is some translation. But

LTκL
1 = LL 1TL(κ) = TL(κ) . �

32: Observation. There exist groups G with
Inn(G) ∼= G, yet with center Z(G) non-trivial. ♦

Proof. Let G be

D2 × D4 × D8 × D16 × . . . .

By (12). . .
Unfinished: as of 27Mar2024 �

Examples of homomorphisms. For posints K,L
and cyclic gps (((ZK ,+))) and (((ZL,+))), what is the set
H := Hom(ZK → ZL)?

Let D := GCD(K,L) and write

K = D ·A and L = D ·B , where A ⊥ B.

A homomorphism f ∈ H is determined by where it
sends 1; f(y) = y · f(1). This f is well-defined as long
as it sends 0 and K to the same place. So we need
that

0 ≡L f(K)
note
=== DA · f(1) .

I.e, DA · f(1) |• DB. Hence we need A · f(1) |• B.
Since A ⊥ B, this latter is equiv to f(1) |• B. Writing
f(1) := jB, we get D many homomorphisms

Hom(ZK → ZL) =
{
fM

∣∣∣ M = jB, where
j ∈ [0 .. D)

}
,

defined by fM (y) := [M · y] mod L.
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When L = K. Let E be the set of endomor-
phisms of (((ZK ,+))). So (((E, ◦))) is a monoid; in-
deed, a commutative monoid It is semigp-isomorphic
to (((ZK , ·))). Its automorphism subgp is, of course, gp-
isomorphic with (((Φ(K), ·))).

Ways to count in groups

33a: Defn. For a (possibly infinite) group G and
posint D, define

SD,G :=
{
x ∈ G

∣∣ Ord(x) = D
}
.

On SD,G define relation: x ∼D y IFF 〈x〉G=〈y〉G. �

33b: Phi-divides Lemma (Chap4#4.4CoroP.84). With
SD,G and ∼D from above: x ∼D y IFF x ∈ 〈y〉.
In particular, each equivalence class has precisely
ϕ(D) many elements. So

ϕ(D) divides |SD,G| . Indeed,

ϕ(D) ·M = |SD,G| ,
†:

where M counts the cyclic order-D subgroups of G.♦

Pf (⇐). By hypothesis, 〈x〉 ⊂ 〈y〉. But these sets
have the same, finite, cardinality. So they are equal.

An element x ∈ G generates an order-D cyclic
subgp IFF x ∈ SD,G. So the order-D cyclic sub-
groups are in 1-to-1 correspondence with the above
equivalence classes. �

Divisibility ideas. All these come from splitting G
into equal-sized subsets.

34: Lemma. Suppose ψ:G�Q is a surjective group-
homomorphism. Then Ord(Q) •| Ord(G). Indeed,
|Q| · |K| = |G|, where K := Ker(ψ). ♦

Proof.The ψ-inverse-image of each q ∈ Q is a left-coset
of K in G. (Using right-cosets also works, since K C G.) �

Ques.Q1. Suppose N := Ord(G) is finite, and posint
D •| N . Must G have a cyclic subgp of order D? How
about just a (non-cyclic) subgp? �

No. The N th dihedral group DN is generated by a
flip F and an order-N rotation R.

Although Ord(D15) = 30 and 6 •| 30, nonetheless
D15 has no elt of order 6: Its 15 “flip elts”, FRi, each
have order 2. And inside the order-15 rotation-subgp
there are certainly no order-6 elts, courtesy Monsieur
Lagrange.

BTWay, the divisors k of 15 are 15, 5, 3, 1. The
number of elts in 〈R〉 of each of these orders is

k 15 5 3 1

ϕ(k) 8 4 2 1
And 8 + 4 + 2 + 1 = 15.♥3

Although D15 has no element of order-6, it does
have a subgroup of order 6. The subgp

〈
F, R5

〉
is iso-

morphic to D3. �

35: Really really No. Although Ord(A4) = 12 and
6 •| 12, nonetheless A4 has no subgroup of order 6: ♦

Proof. The cycle-structures for even permutations on
four tokens are

Cyc-struct d1, 1, 1, 1c d2, 2c d3, 1c

Order 1 2 3

How many 1 1
2 ·
(4
2

)
= 3 2 ·

(4
1

)
= 8

And 1 + 3 + 8 = 12 = |A4|.
Let H be the alleged order-6 subgp of G. Neces-

sarily there is a β ∈ H with cyc-struct d3, 1c. If H
owned a d2, 2c α, then α′ := βαβ 1 would have to be
a different d2, 2c (they couldn’t commute). But then H
includes the Klein-4 group 〈α, α′〉. Yet 4 �r| 6.

The upshot is that no elt of H r {e} is d2, 2c, so
each is a d3, 1c. And there are 5 of them. Cour-
tesy (33b), then, 5 |• ϕ(3). But 5r|� 2. �

♥3Indeed, this yields a proof that
∑

d•|N ϕ(d) equals N .
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36: Cauchy’s Thm for finite abelian groups. Suppose
N := |G| < ∞ where G is an abelian group, written
multiplicatively. If prime p •| N , then there exists
y ∈ G with Ord(y) = p. ♦

Proof. [From the web.] Enumerate G as g1, g2, . . . , gN
and let K1, . . . ,KN be their orders. ISTProve that

p •| K̃ :=
∏N

n=1
Kn ,

since then, p must divide some Kn [since p is prime];
say, p •| K2. And then, y := g2

[K2/p] has order p.

Additive group G̃ := ZK1 × . . .× ZKN
has order K̃.

The map

f :G̃→G by f
(
(((`1, . . . , `K)))

)
:= g1

`1g2
`2 · · · gN`N

is onto, since f
(
(((1, 0, . . . , 0)))

)
= g1, etc.. And f

is a group-homomorphism since G is abelian. Thus
Ord(G) •| Ord(G̃). Hence p •| Ord(G) •| K̃. �

A more standard proof uses induction on quotient
groups.

Pf of (36). WELOG p := 5. We may assume that

If Q is a finite abelian group with Ord(Q) |• 5,
then Q owns an element of order 5.

37:

holds for each group Q with |Q| < |G|.
It suffices to produce a y ∈ G with OrdG(y) |• 5.

[Why? Power yOrd(y)/5 has order 5.]

Since |G| > 1 we can pick a nt-element h ∈ G;
WLOG K := Ord(h)r|� 5. Thus 5 divides N

K , which is
the order of Q := G

H , where H := 〈h〉. Automatically
H C G sinceG is abelian. Finally, h 6= e so |Q| < |G|.

Since quotient Q is abelian, our (37) applies to pro-
duce an element y ∈ G with whose coset yH has or-
der 5 in Q. I.e

Power y5 ∈ H, yet y /∈ H.∗:

Thus OrdG(y)
note
=== 5 ·OrdH(y5) is a multiple of 5. �

Group actions. The symbolG	Ω means that gpG
acts on set Ω; there is a gp-hom

�� ��ψ:G→SΩ . For
g ∈ G and ω ∈ Ω, write the gp-action as ψg(ω) or
g(ω) or just gω. Define the orbit and stabilizer of
a point ω, and the fixed-pt set of a group-element g:

Oψ(ω) := {gω | g ∈ G} ⊂ Ω ;

Stabψ(ω) := {g ∈ G | gω = ω} ⊂ G ;

Fixψ(g) := {ω ∈ Ω | gω = ω} ⊂ Ω .

This Stab(ω) is a subgp, but is rarely normal in G:

∀f ∈ G: f · Stab(ω) · f 1 = Stab(fω) .38:

39: Orbit-Stabilizer Lemma. For each ω ∈ Ω:

Ord
(
Stabψ(ω)

)
·
∣∣Oψ(ω)

∣∣ = Ord
(
G
)
.∗: ♦

Proof. Let H := Stab(ω). Say two elements g, f ∈ G
are “equivalent” , g ∼ f , if gω = fω. [Techically,
ψg(ω) = ψf (ω).] Evidently, the equiv-class of g is sim-
ply the left coset gH. These equivalence-classes par-
tition G; hence (∗). �
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40: Burnside’s Lemma. Counting cardinalities,∑
ω∈Ω

∣∣Stab(ω)
∣∣ #

=
{
(((g, ω)))

∣∣∣ gω = ω
}

#
=
∑
g∈G

∣∣Fix(g)
∣∣ .†:

Counting the number of G-orbits, then,

#Orbits =
1

|G|
·
∑
g∈G

∣∣Fix(g)
∣∣‡:

=
[
# of points fixed by an av-
erage element of G

]
. ♦

Proof. The number of G-orbits equals

∑
ω∈Ω

1

|O(ω)|
Orb-Stab, (39∗)
============

1

|G|
·
∑
ω∈Ω

|Stab(ω)| .

Now apply (40†) to earn (40‡). �

Application: Coloring a cube’s faces. Color
the six faces of a cube red, white and blue; let Ω be
the set of color-cubes; so |Ω| = 36.

How many distinct colorings are there, up to
orientation-preserving rotation? We will use Burn-
side’s Lemma. The group, G, of orientation-preserving
rotations of the cube has 6 · 4 = 24 elts, and is group-
isomorphic to S4.

In the 2nd column, below, remark that
1 + 6 + 3 + 8 + 6 = 24 = |G|.
What isom-
etry g?

How many
such g?

#Fix(g)

= 3F .
F := # [Face-orbits

under 〈g〉].

Id 1 36 1+1+1+1+1+1

FaceRot 90◦ 6
2
· 2 = 6 33 1+4+1

FaceRot 180◦ 6
2
· 1 = 3 34 1+2+2+1

VertexRot 120◦ 8
2
· 2 = 8 32 3+3

EdgeRot 180◦ 12
2
· 1 = 6 33 2+2+2

The sum 1
24 · [1 · 3

6 + 6 · 33 + 3 · 34 + 8 · 32 + 6 · 33]
equals 57. Using K many colors, the number of K-
colorings is 1

24 · [K
6 + 3K4 + 12K3 + 8K2], i.e, is

K2 · [K4 + 3K2 + 12K + 8]
/

24 . (Faces)41:

Coloring a cube’s vertices. K-color the eight
vertices of a cube. How many rotationally-distinct
colorings are there?

What isom-
etry g?

#{such g}
#Fix(g)

= KV.
V := # [Vertex-orbits

under 〈g〉].

Id 1 K8 d18c

FaceRot 90◦ 6 K2 d42c

FaceRot 180◦ 3 K4 d24c

VertexRot 120◦ 8 K4 d12, 32c

EdgeRot 180◦ 6 K4 d24c

The coeff of K4 is 3 + 8 + 6 = 17. So the number of
vertex K-colorings is 1

24 · [K
8 + 17K4 + 6K2] i.e, is

K2 · [K6 + 17K2 + 6]
/

24 . (Vertices)42:

Class equation

Consider a finite group acting on a finite set, G 	 Ω,
and let S be its set of orbits. The trivial assertion�� ��|Ω| =

∑
O∈S |O| leads to a useful formula, when we

consider G acting on itself via conjugation. Firstly,
the Orbit-Stabilizer thm restates the circled as

|Ω| =
∑

ω∈All-Reps

|G|
|Stab(ω)|

,

where “All-Reps” stands for “all orbit representatives”;
this is one token ω per G-orbit. Now let

Fix(G) :=
⋂

g∈G
Fix(g) .

This is the set of ω in 1-point orbits, i.e, O(ω) = {ω}.
Let’s pull out these trivial orbits and define

OReps := All-Reps r Fix(G) ;

this has one representative in each non-trivial orbit.
We have a primordial class equation,

|Ω| = |Fix(G)| +
∑

ω∈OReps

|G|
|StabG(ω)|

.43:

Specializing to conjugation. We now let Ω := G,
and have G act on Ω by conjugation. So we have
a homomorphism J:G→SΩ by g 7→ Jg, where Jg(ω)
equals gωg 1.

Acting by conjugation, the stabilizer StabG(ω) is
the centralizer CG(ω). The orbit of ω is called its
conjugacy class, written

CC(ω) := {gωg 1 | g ∈ G} .
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A conjugacy class is “non-trivial” if it has more than
one point. So CC(h) is trivial IFF C(h) = G IFF
h ∈ Z(G), where Z(G) :=

⋂
h∈G C(h) is the center

of G. Below, let “h ∈ All-CC” mean to take one
representative h per CC. Let NT-CC comprise one
representative per Non-Trivial CC.

44: Class-Equation Thm (After#24.1P.388). For a finite
group G,

|G| = |Z(G)| +
∑

h∈NT-CC

|G|
|C(h)|

.44′:

Each summand |G|/|C(h)| is in [2 .. |G|], and is a
proper divisor of |G|. When G is abelian, the

∑
-sum

is empty, hence zero. ♦

Remark. A less useful form of the class-eqn does not separate
out the size-1 conjugacy classes. It says

|G| =
∑

h∈All-CC

|G|
|C(h)| . �

Proof. Everything has been shown, except for the
observation that when the action is conjugation, then
Fix(G) is the center Z(G). �

We get a nice corollary when G is a “p-group”.

45: Center-pop Thm (P.403). Suppose |G| = pL, where
p is prime and L ∈ Z+. Then Z(G) is non-trivial. (So
|Z(G)| = pK for some K ∈ [1 .. L].) ♦

Proof. The centralizer of each h ∈ NT-CC(G) is
a proper subgroup, so p divides |G|

/
|C(h)|. Hence p

divides the sum on RhS(??′). So p divides |Z(G)|. �

46: Cauchy’s Thm for finite groups (P.406). Suppose
N := |G| < ∞. If prime p •| N , then there exists
y ∈ G with Ord(y) = p. ♦

Proof. This holds when G = 11, so we may assume�� ��If p •| Ord(Q) then Q has an order-p element.

holds for each group Q with |Q| < |G|. So WLOG
we may assume that each centralizer C(h), for h in
NT-CC(G), has order not a multiple of p. Thus p
divides the RhS(??′) sum. So p •| Ord(Z(G)).

We may now apply (36), Cauchy’s thm for abelian
groups, to Z(G), to get a order-p element. �

Remark. We get a nice progression of proofs. Note
that (37) uses induction on quotient groups, but does
not use the Class-Eqn, whereas Center-pop Thm (45)
uses the class equation but no induction. The above
Cauchy’s thm (46), used quotient-induction to put the
class equation in play.

An jazzed-up (46) argument will give Sylow’s first
theorem. �

Defn. Fix a prime p. For each natnum k and finite
group Q, define this proposition.

If pk •| Ord(Q) thenQ has a subgroup
of order pk.

P(k,Q):

We now show that this holds universally. �

47: Sylow’s First Thm. For each prime p, for each nat-
ural number k and finite group G, proposition P(k,G)
holds. ♦

Pf. Always P(0, ∗) holds, so fixing a K≥1 and finite
group G, we show that P(K,G). We may assume that
Ord(G) |• pK and

P(K−1, ∗) holds. Also P(K,Q) obtains,
for each group Q with |Q| < |G|.48:

So WLOG pK �r| CG(h), for each h in NT-CC(G). Thus
p divides the

∑
-sum in (??′). So p •| Ord(Z(G)).

Cauchy’s thm for abelian groups now gives us a sub-
group H ⊂ Z(G) of order-p. Every subgp of the cen-
ter is G-normal, so we have a quotient group Q := G

H ,
and pK−1 divides its order. By (48), this Q has a
subgroup Q′ of order pK−1.

Lastly, H ′ :=
⋃
U∈Q′ U is a subgroup; it is a union of

H-cosets U . And |H ′| = |H| · |Q′| = p · pK−1 = pK .�
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Misc. counting results. We first state a theorem
just for pedagogical purposes.

49: Lemma. We have a subgroup H ⊂ Z(G). Sup-
pose that each two left H-cosets, H1 and H2, have
representatives yi ∈ Hi such that y1�y2. Then G is
abelian. ♦

Proof. Pick two arbitrary xi ∈ G. By hyp., there are
yi ∈ Hxi which commute. Write xi as hiyi. So x1x2

equals

y1h1[y2h2] = y1y2h2h1 , since h1 ∈ Z(G),
= y2y1h2h1 , since y2 � y1,
= y2h2y1h1 , since h2 ∈ Z(G).

And this equals x2x1. �

An immediate corollary is this “G mod Z” lemma.

50: G/Z Lemma.We have a subgroup H ⊂ Z(G); nec-
essarily H C G. If G/H is cyclic, then G is abelian.♦

Remark. In the lemma, any of G, H or G/H may be infinite.
Hypothesis “G/H is cyclic” cannot be weakened to “G/H is

abelian”. For example, the 8 elt dihedral group G := D4 is
non-abelian. It has presentation

G =
〈
R, F

∣∣ F2 = e, FRFR = e, R4 = e
〉
.

Its center isH := {e, R2} and the quotient group G/H is isomor-
phic to D2, which is abelian (∼= Z2×Z2). What goes wrong with
the proof, below? Well, the two H-cosets {R, R3} and {F, FR2}
have no representatives which commute. �

Proof. Pick an elt z ∈ G so that coset zH generates
the cyclic group Q := G/H. Each element of Q has
form [zH]n. Since H is G-normal, [zH]n = znH. So
we let zn be our representative of coset [zH]n. �

51: Lemma. In group G, suppose commuting ele-
ments a, c have different prime orders p and q. Then

Ord(ac) = p · q . ♦

Proof. Let y := ac. Were y = e then p = Ord(a) =
Ord(c 1) = Ord(c) = q; ### . So Ord(y) 6= 1.

Since a� c,

Ord(y) •| LCM(p, q)
note
=== p · q .

Were Ord(y) •| p, then e = [ac]p = cp, so p |• Ord(c).
I.e p |• q. Contradiction.

So Ord(y) �r| p. Ditto Ord(y) �r| q. But Ord(y) •| pq.
Thus Ord(y) = pq, �

52: Prop’n (Chap7#7.2P.144). Suppose K,L ⊂ G are
groups. Then

|K ∩ L| · |KL| =
∣∣K×L∣∣ . I.e, product-set∣∣KL∣∣ =
|K| · |L|
|K ∩ L|

; needs K or L finite.
†:

[Note: Product-set KL may or may not be a group.] ♦

Proof. Let P := |K ∩ L|. By definition, the map

K×L→KL : (((k, `))) 7→ k`‡:

is onto. We now show that an elt κλ ∈ KL has pre-
cisely P many preimages under (‡).

Each elt c ∈ K∩L yields κc ∈ K and c 1λ ∈ L, with
product κc · c 1λ equaling κλ.

Conversely, a product k` = κλ yields a common
element

κ 1k = λ` 1 =: c in K ∩ L.

And κc = k and c 1λ = `. So each c gives a preim-
age. �

Normalizer mod Centralizer

Call a posintN isGrouply unique if the cyclic group
is the only group of order N . We get a sufficient
condition for a product p · q to be grouply-unique.
Here is a routine generalization of an elegant proof
from Gallian.

53: Theorem. Suppose p < q are prime numbers st.

p−1 �r| q−1 and p �r| q−1 .†:

Then the only group G of order p · q is cyclic. ♦
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Setup. FTSOC we’ll assume that G is not cyclic. Our
goal is to exhibit commuting elts h, k ∈ G of orders p
and q, resp.. Necessarily, the product hk will have
order pq. To produce this miracle, we’ll show that

G has a unique order-q subgp; call it K.
Moreover, its centralizer CG(K) is all of G.54:

The uniqueness implies that each elt h ∈ GrK (an h
exists, since pq > q) necessarily has order p. And h
commutes with each chosen k ∈ K r {e}. �

Proof of (54). We proceed in four steps.�� ��There exists an order-q element in G .
FTSOC, suppose no elt x ∈ Gr {e} has order-q;
so each x has order-p. Since p is prime, the order-p
elts come in equivalence classes, {x, x2, . . . , xp−1}, of
size p−1. Hence p−1 must divide Ord(G)− 1. But

pq − 1 = [p−1]q + [q−1] ,

so this would imply p−1 •| q−1. But this ### s (53†).
The upshot: There exists an order-q cyclic

subgp K ⊂ G.�� ��This order-q subgp is unique . Were there
another, call it H, then

H ∩K = {e} ,

since q is prime. From (52†), then,

|HK| = q·q
1 .

But inequality |G| ≥ |HK| implies p ≥ q; a contra-
diction. So there is but one order-q subgp.�� ��The normalizer NG(K) = G . Conjugating K
must give a subgp isomorphic to K; thus is K itself.�� ��The centralizer is all of G . Let C := CG(K)
denote the centralizer. Since K is cyclic, it is abelian.
So K ⊂ C ⊂ G. By Lagrange’s thm, then,

q ≤ |C| ≤ pq .

Since p is prime, ISTShow that |C| 6= q.

Were |C| = q, then the quotient gp

NG(K)
C

note
=== G

K

would have order p. This quotient is gp-isomorphic
to a subgp of Aut(K). Consequently

p •| Ord
(
Aut(K)

)
.

But K is finite-cyclic, so Aut(K) is gp-isomorphic to(((
Φ(q), ·

)))
. Thus p divides ϕ(q)

note
=== q−1. But this

annoys (53†). �

What are some examples of this thm?

Works: Fails: Why
p < q p < q fails

5 < 7 3 < q 2 •| q−1

5 < 19 5 < 11 5 •| 10

5 < 23 5 < 13 4 •| 12

7 < 11 7 < 13 6 •| 12

7 < 17 7 < 19 6 •| 18

Sylow Thms
First a preliminary.

55: Lemma. Finite groups Y C G and prime p have

p �r|
∣∣G..Y

∣∣ note
===

#G
#Y

.∗:

Suppose an x ∈ G has Ord(x) = pL, for some
natnum L. Then x ∈ Y . ♦

Proof. Let Q := G
Y . The homomorphism G�Q is

surjective, so q := OrdQ(xY ) •| Ord(x) = pL. Thus
q is a power-of-p. But q must divide Ord(Q)k, by
Lagrange, hence is coprime to p. The only such power-
of-p is q = p0 = 1. So xY = Y , i.e, x ∈ Y . �

Remark. Dropping the normality Y C G can cause the result
to fail. With G := S3, let Y be the order-2 subgp generated by
a 2-cycle, and let x be a different 2-cycle. �
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56: Coro. Suppose Y ∈ Sylp(G), and H ⊂ G is a
p-group. If H ⊂ NG(Y ), then H ⊂ Y . ♦

Proof. Let N := NG(Y ). Since Y is Sylow-p, index∣∣G..Y
∣∣ is coprime to p. But

∣∣G..Y
∣∣ =

∣∣G..N
∣∣ · ∣∣N ..Y

∣∣,
so p �r|

∣∣N ..Y
∣∣. We may thus apply (55) to groups Y C

N , to conclude:

∀x ∈ N : If Ord(x) is a power-of-p,
then x ∈ Y .

By hyp., H ⊂ N . Each x ∈ H necessarily has order
a power-of-p, since H does. So x ∈ Y . Thus H ⊂ Y .�

Conventions. In this section, G is always a
finite gp; let N := Ord(G). Fix a prime p and write
Ord(G) = pL · n, with n ⊥ p. A subgroup K ⊂ G is
a “p-Sylow subgroup of G” if #Ord(K) = pL. Our
standing convention is:

Subgroups Y ,X ⊂ G are p-Sylow, andH ⊂
G is a p-subgroup.57:

Henceforth I use 5 to represent p and L = 4. So
625 •| N �r| 3125. Let Y be the set of 5-Sylow subgps
of G.

We will consider G acting on Y via conjugation:
For an x ∈ G, the action of x on Y ∈ Y is conjugation
K 7→ xKx 1.

58: Sylow Thm.

a: For each Po5 5k≤625, there exists aG-subgroupH,
with #H = 5k.

b: There exists a Sylow subgp. I.e, Y is non-empty.

c: Each Po5 subgp H lies inside some 5-Sylow sub-
group K. Indeed, for each G-orbit O ⊂ Y. there
exists a K ∈ O with

�� ��K ⊃ H .

d: The 5-Sylow subgps Y form one single G-orbit.
Furthermore

#Y •| Ord(G)
#Y ≡5 1 . ♦

Whoa! The fol. lemma and proof is broken.

59: Lemma. G ⊃ H finite groups The index

r :=
∣∣N (H)..C(H)

∣∣
divides |Aut(H)|. When H is a cyclic p-group, i.e
|H| = pK+1, then

r •| pK [p−1] .∗:

Suppose H ∈ Sylp(G) is abelian. Then each of∣∣G..NG(H)
∣∣, ∣∣NG(H)..CG(H)

∣∣, ∣∣CG(H)..H
∣∣

is co-prime to p. Consequently:

If H ∈ Sylp(G) is cyclic then r ⊥ p−1.†:

If (†) and p is the smallest prime dividing |G|, then�� ��NG(H) = CG(H) , since (Lagrange) r divides |G|. ♦

Grouply-unique

Unfinished: as of 27Mar2024

Further results on Sylow subgroups

60: Thm. Consider finite gps GBN and H ∈ Syl5(G).
Then the intersection H ∩N is ∈Syl5(N). ♦

Proof.Since it is a subgroup of H, this H∩N is a 5-gp.
So it has an extension N̂ ∈ Syl5(N) with N̂ ⊃ H ∩N .

This N̂ is a 5-gp, so it has an extension to a
Ĝ ∈ Syl5(G). Evidently I := Ĝ ∩N is a 5-group
and a subgp of N . But I ⊃ N̂ , and N̂ has maximum
cardinality among 5-subgps of N . Consequently

Ĝ ∩N = N̂ ,∗:

since the groups are finite.
By Sylow, Ĝ is conjugate to H; there is an x ∈ G

with xĜx 1 = H. From (∗), then,

xN̂x 1 = xĜx 1 ∩ xNx 1 = H ∩N .

(xNx 1=N sinceN C G.) ThusH∩N has the cardinality
of a 5-Sylow subgp of N , so it is one. (And therefore
H ∩N = N̂ .) �

61: Theorem. Consider finite gps GBN and suppose
H ∈ Syl5(G). Then HN

N is a 5-Sylow subgp of G
N . ♦

Proof.
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Normal subgroups
For this section N is a natnum. Here is the theorem
we are shooting for:

62: Thm. For each N ∈ Nr {4}, the alternating
group AN is simple. ♦

Remark.The alternating groups A0,A1,A2 (i.e, compris-
ing all the even permutations) are each the triv-gp, hence
simple. Since Ord(A3)=3 is prime, group A3 is sim-
ple. So the first case we need consider is N ≥ 5. Some
of the lemmas below hold for lower N .

Let a solo 3-cycle mean a perm whose cycle
lengths are 3, 1, 1, N−3. . . 1. �

63: 3-cycle Lemma. The solo 3-cycles generate AN .♦

Proof.

64: Lemma. Suppose π ∈ AN has a 3-cycle. Let K be
the smallest normal subgp of AN owning π. Then K
has a solo 3-cycle. ♦

Proof.

Notes to me. Bertrand Postulate.
Burnside’s Normal p-complement Theorem.
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§Index for Basic Algebra

ΦN , ϕ(N), 1
C, see Group binrel, normal
⊥, see Group binrel, transverse

alternating group, 4
annihilator, 1
associates, 2
associative, 1

center of a group, Z(G), 12
class equation, 11
commutative, 1
conjugacy class, 11
conjugation map, 7

dihedral group, 5
distributes-over, 1

field, 1
fixed-point, 10

Gaussian integers, 1
Group, 1

acting on a set, 10
alternating, 4
dihedral, 5
Klein-4, 5
of units, 1
stabilizer, 10

Group binrel
normal, 6
transverse, ⊥, 6

Grouply unique, 13

identity element, 1
inner automorphism, 7
integral domain, 1
inverse element, 1
irreducible element, 2

Klein-4, see Group

monoid, 1

orbit, 10

prime element, 2

ring, 1
annihilator, 1
domain, 1
zero-divisor, 1

semigroup, 1
stabilizer, see Group

torsion, see Group, torsion
transverse groups, ⊥, 6

unit, 1, 2
U(N), 1
UΓ, 1

Vierergruppe, see Group, Klein-4

ZD, i.e: zero-divisor
zero-divisor, 1, 2
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