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Semigroups & Monoids. A semigroup is a pair

(S,e), where e is an associative binary operation

[binop| on set S. A special case is a monoid. It

is a triple (S,e,€e), where e is an associative binop

on S, and e € S is a two-sided identity elt.
Axiomatically:

G1: Binop e is assoctative, i.e Va,3,y € S, necessar-
ily [cefley = ce[Fen].

G2: Elt e is a two-sided identity element, i.e
Va € St

aee=qa and eex = q.
Moreover, we call S a Group if t.fol also holds.

G3: Each elt admits a two-stded tnverse element:
VYa, 36 such that ve 5 =e and Sea =e.

When the binop is ‘4’, addition, then write the
inverse of v as —~« and call it “negative o”. We then
use 0 for the id-elt.

When the binop is ‘multiplication’, write the inverse
of v as o' and call it the “reciprocal of o” We use 1
for the id-elt. Usually, one omits the binop-symbol
and writes af for cve/3.

For an abstract binop ‘e’, we often write o' for the
inverse of a [“av inverse”|, and omit the binop-symbol.
If ® is commutative [Vo,3, necessarily a o 3 = 3 e o then

we call S a commutative group.

Rings/Fields. A ring is a five-tuple (', +,0,,1)
with these axioms.

R1: Elements 0 and 1 are distinct; 0 # 1.

R2: Triple (F, =+, O) is a commutative group.

R3: Triple (I‘, - 1) is monoid.

R4: Mult. distributes-over addition from the left,
alr +y| = [az] + [ay], and from the right,

z + yla = [za| + [ya; this, for all a,z,y € T

Webpage http://people.clas.ufl.edu/squash/

Our I is a commutative ring (abbrev.: commRing)
if the multiplication is commutative.

When T is commutative: Say that o ¢ [ |o divides
Bl if there exists u € T s.t ap = B. This is the same
relation as [ | « |8 is a multiple of a].

Zero-divisors. Fix a € I'. Elt g € I' is a “(two-
sided) anmnihilator of o” if af =0 = fa. An « is
a (two-sided) zero-divisor if it admits a non-zero
annihilator. So 0 is a ZD, since 0-1 =0 = 1.0, and
1 # 0. We write the set of I'-zero-divisors as

ZDr or ZD(T).

[E.g: In the Zi5 ring, note 9 # 0 and 10 # 0, yet 9-10 is = 0.
So each of 9 and 10 is a “non-trivial zero-divisor in Zl_;"".]

Ana el isal~unit if 36 €T st. af =1 = fa.
Use Ur or U((D)

for the units group. In the special case when I is Zy,
I will write ® for its units group, to emphasize the
relation with the Euler-phi fnc, since (V) = |D /.
[Some texts use U(N) for the Zy units group.|

Integral domains, Fields. A commutative ring
is a ring in which the multiplication is commutative.
A commRing with no (non-zero) zero-divisors [that is,
7Dr = {0}] is called an integral domain (intDomain),
or sometimes just a domain.

An intDomain F' in which every non-zero element
is a unit [i.e U(F) = F~.{0}] is a field. That is to say, F
is a commRing where triple (F~.{0}, -, 1) is a group.

Examples. The fields we know are: Q, R, C and, for
p prime, Zp.

Every ring has the “trivial zero-divisor” —=zero it-
self. The ring of integers doesn’t have others. In
contrast, the non-trivial zero-divisors of Z19 comprise
{£2,43,+4,6}.

In Z the units are +1. But in Zjo, the ring of in-
tegers mod-12, the set of units, ®(12), is {£1,£5}.
In the ring Q of rationals, each non-zero element is a
unit. In the ring G := Z 4 iZ of Gaussian integers,
the units group is {#1,+i}. [Aside: Units(G) is cyclic,
generated by i. And Units(Z12) is not cyclic. For which N is
®(N) cyclic?] []
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Irreducibles, Primes. Consider (I',+,0,-,1), a
commutative ring”’. An elt o € I is a zero-divisor
[abbrev ZD| if there exists a non-zero § € I' st. aff = 0.

In contrast, an element v € I' is a wnit if Jw € I

st. ww = 1.

This w, written as v, is called the
reciprocal |or multiplicative-inverse| of u. [When an
element has a mult-inverse, this mult-inverse is unique.]

Exer la: If a divides a unit, « ¢ u, then « is a unit.

Exer 1b: If v o z with z € ZD, then ~ is a zero-divisor.

Exer 2: In an arbitrary ring I', the set ZD(T') is disjoint from
Units(T).

An element p € I is:

1: I'-¢rreducible if p is a non-unit, non-ZD, such
that for each I'-factorization p = -y, either x or
y is a ['-unit. [Restating, using the definition below:
Either x~1,y~p, or z=p, yzl.]

1: I'-prime if p is a non-unit, non-ZD, such that for
each pair ¢,d € I": If p o [c- d] then either p ¢ ¢
or ped.

Associates. In a commutative ring, elts o and (8
are assoctates, written « ~ [J, if there exists a
unit v st. [ = ua. [For emphasis, we might say strong
associates.| They are weak-associates, written
o~ G, if « 0{ pand o le 3 [i.e7 a € pl'and 5 € aF].

Ex 3: Prove Assoc = weak-Assoc.

Ex4: If o ~ 8 and a ¢ 7D, then «, 8 are (strong) associates.

Ex5: In Zj0, zero-divisors 2,4 are weak-associates. [This,
since 22 = 4 and 43=12 = 2]

Ex 6: With d ¢ a, prove: If « is a non-ZD, then d is a non-ZD.

And: If « is a unit, then d is a unit.

Are 2,4 (strong) associates?

1: Lemma. In a commRing”' T, each prime a is
irreducible. O

Proof. Consider factorization a = zy. Since o ¢ zy,
WLOG « ¢ z, i.e 3¢ with ac = . Hence

*: a = Ty =0ocy.

By defn, a ¢ ZD. We may thus cancel in (x), yielding
1 =cy. So y is a unit. ¢

“IMore generally, a commutative monoid.
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There are rings¥? with irreducible elements p which
are nonetheless not prime. However. ..

2: Lemma. Suppose commRing I" satisfies the Bézout
condition, that each GCD is a linear-combination.
Then each irreducible o is prime. O

Pf. Suppose « ¢ c:d.  WLOG « fc. Let

g = GCD(a,c). Were g =~ «, then « ¢ g ¢ ¢, a con-

tradiction. Thus, since « is irreducible, our ¢ ~ 1.
Bézout produces S, T € I' with

1 = Sa+Tec.
*: d = Sad+Ted = Sdao+ Ted.

Hence

By hyp, « ¢ cd, hence a divides RhS(x). So o o d.4

3: Lemma. In commRing I, if prime p divides product
a1 ---ag then p & o for some j. [Exer. 7] O

4: Prime-uniqueness thm. In commRing T", suppose
P1'P2:P3 Pk = q1°92°93 - qL

are equal products-of-primes. Then [ = K and, after
permuting the p primes, each p, ~ qy. O

Pf. [From Ex.4, previously, for non-ZD, relations ~ and =~ are
the same.| For notational simplicity, we do this in Z,
in which case p;, ~ g; will be replaced by p;, = q;..
FTSOC, consider a CEX which minimizes sum
K+L; necessarily positive. WLOG L>1. Thus
K>1. [Otherwise, q,; divides a unit, forcing q; to be a
unit; see Ex.la.] By the preceding lemma, q; divides
some p; WLOG q; o pi. Thus q; = py [since py
is prime and q, is not a unit|. Cancelling now gives
P1-P2  Pr—1=9q1°92 - qr_1, giving a CEX with a
smaller (x—1)+ (-1 sum. ¢

“2Consider the ring, I', of polys with coefficients in Zjs.
There, x> — 1 factors as [z — 5|[z + 5] and as [z — 1][z + 1].
Thus none of the four linear terms is prime. Yet each is I'-
irreducible. (Why?) This ring I" has zero-divisors (yuck!),
but there are natural subrings of C where Irred# Prime.
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Example where ~ # ~. Here a modification of an
example due to Irving (“Kap”) Kaplansky.
Let Q be the ring of real-valued continuous fncs
on [-2,2]. Define €,D € Q by: Fort > 0:
£(1) = D(t) — {t—l %fte [1,2]}‘
0 if t € [0,1]

E(t) = &(-t) and D(t) = —D(~t).
[So € is an Even fnc; D is odD.] Note € = fDand D = f¢,
where
1 ifte|l,2]
ft) = ¢t iftel1,1]

-1 ift e [-2,-1]

Hence € ~ D. [This f is not a unit, since f(0) = 0 has no
reciprocal. However, f is a non-ZD: For if fg = 0, then g must
be zero on [-2,2] ~. {0}. Cty of g then forces g = 0.]

Could there be a unit u € 2 with uD = €7 Well

u(2) = b ZEL, and u(2) = s ZE1.

~—

Cty of u() forces u to be zero somewhere on inter-
val (-2,2), hence u is not a unit. O

Addendum. By Ex.4, both € and D must be zero-
divisors. [EX(‘I.8Z Exhibit a function g€, not the zero-fnc,

such that &g = 0.] ]

Filename: Problems/Algebra/algebra.basic-defns.latex
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Back to Semigroups/Monoids

Consider a not-nec-commutative monoid (.9, e, €) and
anz € S. Anelt A € S is a “left inverse of z” if
Aex =e. Of course, then x is a right inverse of \.
Use LInv/RInv for “left/right inverse”.

We will often suppress the binop-symbol and
write zy for x e y.

5: Prop'n. In a monoid (S, e,e):

12 For each © € S: If © has at least one LInv and
one RInv, then x has a unique LInv and RiInv,
and they are equal.

11: Suppose every elt of S has a right-inverse. Then

S is a group. O
Proof of (1). Suppose A is a LInv of z, and p a Rlnv.
Then

A= Azp] = [Mz]p = p.
And if two LInvs, then A\; = p = Xo. ¢

Proof of (ii). Given x € S, pick a RInv r and a RInv
to r, call it y. Now

x = zxefryl = [xzrjey = y.

Hence x is both a left and right inverse to r. So r is
a right /left inverse to x. [Now apply part (i).] ¢

In the next lemma, we neither assume existence of
left-identity /left-inverses, nor do we assume unique-
ness of right-identity /right-inverses.

6: Lemma. Suppose X Is an associative binop on S,
and e € S is a righthand-identity elt. Suppose that
each y € S has a |wrt e| righthand inverse, 3. Then:

6a: If yxy=y, then y=e.

Moreover:

Each 3/ is also a left inverse to y, and e is
6b: . .

also a lefthand-identity.
Thus (S, x,€) is a group, O
Pf(6a). Notey=yxe=yx [yxy]=[yxy] xy.

By hypothesis y x y = vy, so the above asserts that
y=yxy =e. ¢

Back to Semigroups/Monoids
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Pf of (6b). First let’s show that every Rlnv, ¢/, of v,
isalso a LInvofy. Let b:= [y x y]. Courtesy (6a),
it is enough to show that b x b =b. And

bxb = [y x [yxy]] xy, by assoc.,

:[yxe] X
note g

We can now show that e is also a lefthand identity.
After all, ex y=[yx ¢ xy=yx [y xyl =y xe,
since 3 is a LHInverse. Le, e x y = y. ¢

Terms. A general group might be written (G, -, e)
or (I', -,&) or (G, -,1) or (G,+,0). The symbol for
the neutral [i.e, identity| element may change, accord-
ing to whether the group name is a Greek letter, or
whether the group is written multiplicatively or addi-
tively. A vectorspace might be written as (V. +,0) or
(U, +,0). A group of functions, under composition,
might be written (G, o, Id).

We may use 1 (blackboard bold ‘1’) for the trivial
group, but more often will write {e} or {0} or {1} as
appropriate.

For the N cyclic group, use Zx or (Zy,+) when
written additively, but use Yy or (Yy,-) when written
multiplicatively. The Klein-4 group VY, the Vier-
ergruppe, is isomorphic to YoxVs. [So Vi = {e, a,b,c}
is a commutative-gp with ¢® = b*> = ¢ = e and abc = e.]

Use Sy, Dy for the N th, symmetric and dihedral
groups. So [Sy|=N!and |[Dy|=2N and |Yy|=N

The alternating group A is the subgroup of Sy
comprised of even permutations. So |Ag| = [A{| = 1;
otherwise, ‘AN‘ is N!/Q. [An arbitary set 2 engenders its
symmetric group S of permutations, but there is no corre-
sponding alternating group unless {2 is ﬁnite.]

When each element of G has finite order, we call GG
a torsion group.

To “conjugate g by element x”° means to form ex-
"I, For an arbitrary exponent n € Z,
= [ag"a].

pression x-g-x
note that [zgz™!]
The “commutator of elements « and B is

n

[e, 8] = apap™

(which differs from [a, 8], the standard notation).

Filename: Problems/Algebra/algebra.basic-defns.latex
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Cyclic groups

I'll use (Zy,+) when writing a cyclic group addi-
tively, but will use (Yy, -) when writing multiplica-
tively. The infinite group Y is iso to (Z,+).

Defn. For z € G we use Periodsq(x) for the set of
integers k with 2" = e.

For a subgroup H C G, let Py(z) = Py g(x) be
{keZ | 2 € H}. So Periods(z) is simply Py(z),
when H is the trivial subgp {e}. O

7: Periods Lemma. Fix G, H,x as above, and let Py
mean Py (x). If Py is not just {0}, then Py = NZ,
where N is the least positive element of Py.

For G-subgroups H D K, then,

H-Ordg(z) o K-Ordg(z) ¢ Ordg(z). O

Proof. Suppose N := Min(Z4 N Pp) is finite. Fixing
a k € Py, we will show that k @ N.

Set D := GCD(N, k). LBolt (well, Bézout's lemma)
produces integers such that D = NS + kT. Hence
D € Py, since 2P equals [zN]%-[2%]T = e%.eT.
Thus N =D 4 k. ¢

8: Defn. Use H-Ord(z) or H-Ordg(z) for the above N
else, if Py is just {0} then H-Ord(z) := oco. Call this
the “H-order of . The order of z, written Ord(z)
or Ordg(x), is simply H-Ordg(z) when H :={e}. [

Suppose H <1 G. Now [zH]F = 2*H, so [tH]*=H
IFF z € H. In terms of the quotient group,

7': Vo € G: Ordg/p(xvH) = H-Ordg(z) o Ordg(x).

Dihedral groups

The Klein-4 group is isomorphic to Yo X Yo. Some-
times called the Vierergruppe, it has presentation

each pair commutes, and the prod-

Each of {a,b,c} is an involution,>
uct of each two equals the third.

9: V = <a,b,c

Using fewer generators, but less symmetric, is this
presentation:

9': Vz(a,b‘aQZe:bQ,a‘:b>.

Some theorems (Lame title; I know)
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For each posint N, the Nt** dihedral group is
Lo: Dy = (R,F|F*=e, FRFR=e, R =e);
Dw = (R,F|F?*=e, FRFR=e), for N = cc.
Now for some straightforward facts.
11: Fact. For all N € [1..00] and integers j:
R/.-F = F-R7.
Lastly, Ord(Dy) = 2N, and Ord(Ds) = No. O

12: Lemma. Groups D12=Yy and Dy=YoxYy (the
Vierergruppe), so each has full center and trivial Inn()-
group.

For each N € [3..0]:

Both Z(Ds) and Z(Dp oqq) are trivial. Conse-
quently Inn(Dy) = Do, and Inn(Dy odq) = Dy .

When N = 2K is even: The center Z(Dog) =
{e,RE}. Consequently D = Inn(Dyx) via the map

where k :=[j mod K]. O

aIld FR.'7 — JFRk Improve this!

Proof. The commutator [R/,F] equals
R'FRVF! = R¥F? = RY .

Thus R/ < F IFF 2j e N. So the only possible nt-

element in the center is R, where N = 2K < oo.

And RE commutes with each FRY. ¢

Some theorems (Lame title; I know)

Results to be proved in class.

13: Lagrange's theorem. Suppose H is a subgroup of
finite group G. Then Ord(H) divides Ord(G). O

Proof. Define equiv-rel ~ on G by o ~ 3 by a3 € H.
Etc. ¢

14: Lemma. For each N > 2, the full symmetric group
Sn is generated by an N-cycle v := (bo,b1,bs,...,bn-1)
together with 7 := (bo, b1); an “adjacent” 2-cycle.

Proof. WLOGenerality, N > 3.

ISTShow subgroup (v, 7) owns all transpositions.
Hence, by our argument from class, ISTJust show that
(v, 7) owns all adjacent [relative to v| transpositions.

Finally, note that v 170 = (b, b,). Ete. ¢

Filename: Problems/Algebra/algebra.basic-defns.latex
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Normality
Consider two gps H C G. Say that “H is normal
in G” | written H <1 G, if Vo € G: v Hx™' = HJ. This
is equivalent [see (23), below| to [Vo € G: xHa™t C HJ.
However, an individual element x could give proper
inclusion, as the following two examples show.
Proper inclusion, zHz™' C H, forces that |H| = oo
and Ord(z) = oo and that G is not abelian.

15: E.g. Let G:=Sy. Let H C (G comprise those
permutations h:ZO st. [Vn < 0: h(n) = n|; i.e, hly
is the identity-fnc.

Define = € G by x(n) := n—5. For n negative,

T h z7!
e n — n—-5 — n-5H — n,

for an arbitrary 4 € H. Consequently, zHx™" C H.

Note that (f) holds for all n<5. So no elt n e H
which mowves something in [0..5), e.g, 17(2) = 3, can
possibly be in 2Hz™'. We have thus «Hz™" S H,
proper inclusion. ]

16: E.g. [seefile| In G = GLy(Q), the shear S := [} 1]
generates H = (S) ., which is a copy of (Z,+). Con-

jugating by X := [2 {] produces ([ XSX™! = S?| Conse-
quently,

xaxt = {[} %] |nez}.

This is a proper subset of H. ]

17: Subset-product: ~ For subsets N,I' C G, let NI'
mean the set of products xza, over all z € N and o € T,
Even when N and I' are subgroups, product NI" need
not be a subgroup.

E.g, let R,F be the rotation and flip in G := Ds.
Subgroups N = {e,F} and I' .= {e,FR} make NI'
equal {e,F,FR,R}. This is not a group, since it does
not own RZ. O

18: Lemma. If at least one of the subgroups N,I" C G
is mormal in G, then I'N = NI', and this product is
itself a G-subgroup. O

Proof. (Use letters z,y € N and o, 3 € F.) WLOG N < G.
Thus 2/ := fz3" is an N-element. Hence Sz € I'N

Normality
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equals 2/3. Consequently, 'N C NI'. By symmetry,
then, 'N = NT".
Why is NI' sealed under multiplication? Product

note
Yy - xa equals yr'Ba C°NI. Finally, the inverse
element rav = o 'z isin I'N = NT. )
Defn.  Two subgroups N,I" C G are transverse ,
written N L ', if NNT = {e}. Always, the map
19: [:Nx['—NT', by (z,w) — 2w,
is onto. It is injective IFF N and I' are transverse.

The following result characterises direct product. [J

20: Direct—Eroduct Lemma. Suppose N,I" C G groups,
with N < G, and N L T'. Let

G = (N,T)5 2 NI,

Recalling the bijection. f:NxI'— G from (19), the
following are equivalent:

12 NS T, inside G.
1: f is a homomorphism, hence isomorphism.

ii: T <1 G. O

Pf (i)=-(ii). Does f respect multiplication? Checking,

F((@.0)) - £((v.)) = za-yp = wyas,
since N = I'. And this equals f((zy, af3)). ¢

Pf (ii)=-(iii). Always {e}xI" << NxI'. Now apply f. 4

Pf (iii) = (i). With z € N and @ € I', we need to

show that | zazta™ = el.

Note that oz 'a™ € N, since N < . Hence

ot € NN c N.

T-or

And zaz™' € T, since ' < G. So zaz™'-atel.
Thus [z,a] e NN T, so [z, o] =e. ¢

Defn. Let SurEnd(G) denote the monoid of surjective
endomorphisms of G. Evidently

Filename: Problems/Algebra/algebra.basic-defns.latex
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21: Inn(G) C Aut(G) C SwEnd(G) C End(G).

Any of these inclusions can be strict, depending on
the group.

Here are various strengthenings of the notion “H is
a normal subgroup of G”. They are defined by how
many homomorphisms ¥:GO send H into itself.

Suppose that |¢(H) C H | for every ...

‘WHicH Homs? THEN WRITTEN AS

... ¢ € Inn(G) H<G

9. ... € Aut(G) JEaeNe:
... ¥ € SwEnd(G) HY G

... ¥ € End(G) H'SG

Aut
23: Note. Inthe H <G and H < G cases, we may
conclude that each (inner-)automorphism « in fact

gives equality |o(H) = H|. This, because inclusion

W)(H) € H must hold for both 1 :== o and ¢ == o .[]

In the examples below, H, K C (G, -, e) are groups.
Abbrev the normalizer N := N (H) := NG(H) and
centralizer C .= C(H ) := Cq(H) of subgp H. O

24: E.g. Each = € G engenders a conjugation map
J:GO by
Jo(g) = wga.

Easily J, o J, = J,,. Conjugations are called inner
automorphisms of G; the group of conjugations is
written [nn(¢'). This map

25: J:G—-Inn(G) : . — J,

is a surjective gp-homomorphism. Its kernel is the

center Z((). So Z(G) < G and

26: Inn(G) = %

A slight generalization, taking a subgp H, is to map

25': Jg: NGH)—=Aw(H) : x— Jp |-

Its kernel is the centralizer Cq;(H
isomorphic to the subgroup

). So ’gég)) is group-

A = Range(Jy) C Aut(H). O

Normality

Page 7 of 18

27: Lemma. Suppose |G H|=2. Then H < G.

Pf. Pick b € G~ H. Since the index is 2,
pHILUH = G = [Hb|UH.

Thus the left and right coset-partitions are equal. So
H<aG. ¢

Remark.Index |G H| = 2 need not imply the stronger

753G Tn the Vierergruppe, (??’), the (a), sub-
group has index 2 in V. Yet the automorphism that
exhanges a and b moves (a).

Also, |G- H| = 3 is not sufficient to imply normality.
In D3, the non-normal subgp (F) has index 3. O

28: Lem. Consider groups H C G C F. Then

Aut Aut Aut
29: [HA9G<QF] = H<F.
Aut
30: [H<G<F|] = H<F.

End

End End
And [H 9 G Q F|=H < F. Proof. Use (23). O

Sur

Sur Sur
Ques. Does [H q G < F] imply H JF? A
CEX necessarily has G infinite, since there would be
a 1 € SurEnd(F') which maps G properly inside G.[]

31: Normal Grabbag.

1: For two subgps H, K of G, let <?1 be the strongest
normality so that both H, K <?1 G. Then the com-
?
mutator-subgp [H, K] < G.

B Sur .. End
itz The center Z(G) < G, but not necessarily <.

Au
iti: Inn(G) < Aut(G), but not necessarily 5y O

Pf of (i). Take an-endomorphism = +— Z of the appro-
priate type. Fix h € H and k € K. By hypothesis,
h € H and k € K. Thus

[H,K] > [hk] 22 [h4]. ¢

Filename: Problems/Algebra/algebra.basic-defns.latex
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Pf of (ii). Take an onto-endomorphism x ~— 7 and a
point z € Z(G). To show z € Z(G), we fix a g € G
and show that gZ¢g ' = e. Since the endo is surjective,
there exists an v € G such that 7 = g¢.

Now z <5 7, so e = vz . Thus

1

0]
Il
=2
N
2
AN
Il
=2)
)
=)

Pf of (ii)bis. We produce an endomorphism, of a group
G = QxD, which carries its center Z(G) outside of
itself.  Here, Q@ = {w,e} is an order-2 group gener-
ated by w. And D := D3 is a dihedral group; use e
for its neutral elt. So the center of G is
Z(G) = ZQ)x Z(D) = Qx{e}.

Let F be a flip in D3; it generates an order-2 subgp
{F,e} = F C D. The Klein-4 group QxF has an
“exchange the generators” automorphism, A, with

A((w,€e)) = (e,F) and
A((e,F)) = (w,e€).

defined by exhanging the generators of subgps (2
and F'. Finally, consider the endomorphism &:G—G
which collapses the D side:

Forall o € Qand z € D: &((a,z)) = (o, €).

Finally, the composition € > A is a G-endo which
carries Qx{e} to {e}xF. ¢

Pfof (iii).  [See file] Note that Dy has exactly two
subgroups isomorphic to the Vierergruppe,

V = (R°,F) = {e,R* F,FR’} and
V' .= (R*,FR) = {e,R’ FR,FR’}.

And o(V) = V', where o € Aut(Dy) is the automor-
phism which sends R +— R and F +— FR.

Now for the example. Let G := D4. Check that
A = Aut(Dy) = Dy. Its subgp S = Inn(Dy) = Dy is
isomorphic to a Vierergruppe. One can interpret the
above « as in Aut(A), and as carrying S to the other
copy of the Vierergruppe. ¢

Normality

Prof. JLF King

Examples of normal subgps. On ®-dim’al Eu-
clidean space R®, let Guans be the group of trans-
lations. Then Gryans is normal inside the gp of all
isometries. Indeed, Gyans is normal in the gp of in-
vertible affine maps R®0.

Proof.  On V := R?®, each vector k € V yields a
translation T,:VO by Tx(v) := v+ k. Evidently a
linear L:VO has commutation

LoT, = Tyol.

Consequently, a general (we want “invertible”) affine map
can be written A :== L o T, for some linear L and trans-
lation T;

So to show Gyans normal in the affines, it is enough
to conjugate by an invertible linear map, L. Our goal
is to show that L o T,, o L™ is some translation. But

LTel™ = LL' Ty = Tiw) - ¢

32: Observation. There exist groups G with
Inn(G) = G, yet with center Z(G) non-trivial. O

Proof. Let G be
DQX]D)4XD8X]D)16X....

By (12)...
Unfinished: as of 27Mar2024 ¢

Examples of homomorphisms. For posints K,L
and cyclic gps (Zk,+) and (Zp,+), what is the set
H = HOm(ZK — ZL)?

Let D := GCD(K, L) and write

K=D-A and L=D-B, where Al B.

A homomorphism f € H is determined by where it
sends 1; f(y) =y - f(1). This f is well-defined as long
as it sends 0 and K to the same place. So we need
that

0 = f(K) =£ DA-f(1).

l.e, DA- f(1) o DB. Hence we need A- f(1) o B.
Since A L B, this latter is equiv to f(1) le B. Writing
f(1) =3B, we get D many homomorphisms

Hom(Zx — Z1) = {fM‘ M = jB, where }’

j€[0..D)
defined by far(y) == [M - y] mod L-
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When L = K. Let E be the set of endomor-
phisms of (Zk,+). So (E,o) is a monoid; in-
deed, a commutative monoid It is semigp-isomorphic
to (Zk,-). Its automorphism subgp is, of course, gp-
isomorphic with (®(K), ).

Ways to count in groups

33a: Defn. For a (possibly infinite) group G and

posint D, define
Sp,c = {z€G|Ord(z) =D} .

On Sp ¢ define relation: © ~p y IFF (2)o=(y). O

33b: Phi-divides Lemma (chap4#4.4Coro’*84). With
Sp.c and ~p from above: xz~py IFF x € (y).
In particular, each equivalence class has precisely
@(D) many elements. So

f: p(D) divides ‘SD70| 3
' o(D)-M = |Spa

Indeed,

9

where M counts the cyclic order-D subgroups of G.¢

Pf(«). By hypothesis, (z) C (y). But these sets
have the same, finite, cardinality. So they are equal.

An element x € G generates an order-D cyclic
subgp IFF 2 € Sp . So the order-D cyclic sub-
groups are in 1-to-1 correspondence with the above
equivalence classes. ¢

Divisibility ideas. All these come from splitting G
into equal-sized subsets.

34: Lemma. Suppose ¥:G—Q is a surjective group-
homomorphism. Then Ord(Q) ¢ Ord(G). Indeed,
|Q| - | K| = |G|, where K = Ker(1)). O

Proof. The 1p-inverse-image of each ¢ € @ is a left-coset
of K in G. (Using right-cosets also works, since K < G.) ¢

Ques. Q1. Suppose N := Ord(G) is finite, and posint
D ¢ N. Must G have a cyclic subgp of order D? How
about just a (non-cyclic) subgp? O

Ways to count in groups
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No. The N dihedral group Dy is generated by a
flip F and an order-N rotation R.

Although Ord(D;5) = 30 and 6 ¢ 30, nonetheless
D15 has no elt of order 6: Its 15 “flip elts”, FR?, each
have order 2. And inside the order-15 rotation-subgp
there are certainly no order-6 elts, courtesy Monsieur
Lagrange.

BTWay, the divisors k of 15 are 15,5,3,1.
number of elts in (R) of each of these orders is

The

El]l15 5|31

And8+4+2+1=15"

ok) | 84|21

Although Dq5 has no element of order-6, it does
have a subgroup of order 6. The subgp (F,R®) is iso-
morphic to Ds. ¢

35: Really really No.  Although Ord(A4) = 12 and
6 o 12, nonetheless A4 has no subgroup of order 6: ¢

Proof. The cycle-structures for even permutations on
four tokens are

Cyc-struct || [1,1,1,1] [2,2] [3,1]
Order 1 2 3
How many 13- (;1) =312 (?) =8

And 1+3+8=12= |Ay|.

Let H be the alleged order-6 subgp of G. Neces-
sarily there is a f§ € H with cyc-struct [3,1]. If H
owned a [2,2] a, then o/ := BaB! would have to be
a different [2,2] (they couldn’t commute). But then H
includes the Klein-4 group (a,a’). Yet 4 6.

The upshot is that no elt of H ~ {e} is [2,2], so
each is a [3,1]. And there are 5 of them. Cour-
tesy (33b), then, 5 » (3). But 5} 2. ¢

“3Indeed, this yields a proof that Zd.‘N ©(d) equals N.
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36: Cauchy's Thm for finite abelian groups. Suppose
N = |G| < oo where G is an abelian group, written
multiplicatively. If prime p o N, then there exists
y € G with Ord(y) = p. O

Proof. |From the web.| Enumerate G as g1,92,...,9N
and let Ky,..., Ky be their orders. ISTProve that

p °| K = Hrjj:lKna

since then, p must divide some K, [since p is prime];
say, p o K5. And then, y = ¢272/P| has order p.

Additive group G = Lk, X ...x Lk, has order K.
The map

f:1G=G by f((f,. .. lK)) = gige® g™y

is onto, since f((1,0,...,0)) = g1, etc.. And f
is a group-homomorphism since G is abelian. Thus
Ord(G) o Ord(G). Hence p o Ord(G) ¢ K. ¢

A more standard proof uses induction on quotient
groups.

Pf of (36). WELOG p := 5. We may assume that

If Q is a finite abelian group with Ord(Q) le 5,

3T then () owns an element of order 5.

holds for each group Q with |Q| < |G].
It suffices to produce a y € G with Ordg(y) | 5.
[Why? Power y©*4®)/> has order 5.|

Since |G| > 1 we can pick a nt-element h € G;
WLOG K := Ord(h) k5. Thus 5 divides &, which is
the order of @ = %, where H := (h). Automatically
H < G since G is abelian. Finally, h # e so |Q| < |G].

Since quotient @ is abelian, our (37) applies to pro-
duce an element y € G with whose coset yH has or-
der 5in Q. Le

x:  Power y°> € H, yet y ¢ H.

Thus Orde(y) 225 - Ordy (y°) is a multiple of 5. 4

Ways to count in groups

Prof. JLF King

Group actions. The symbol GOS2 means that gp G
acts on set {2; there is a gp-hom . For
g € G and w € Q, write the gp-action as 94(w) or
g(w) or just gw. Define the orbit and stabilizer of
a point w, and the fixzed-pt set of a group-element g:

Op(w) = {gw|g € G} C Q;
Staby(w) = {g€ G| gw = w} c G;
Fixy(g) = {w e Q| gw =w} C Q.

This Stab(w) is a subgp, but is rarely normal in G:

38: Vfegd: f-Stab(w) - f = Stab(fw).

39: Orbit-Stabilizer Lemma. For each w € §:

*: Ord(Staby(w)) - [0y (w)| = Ord(G). O

Proof. Let H := Stab(w). Say two elements g, f € G
are “equivalent”, g ~ f, if gw = fw. [Techically,
Yg(w) = ¥y(w).] Evidently, the equiv-class of ¢ is sim-
ply the left coset gH. These equivalence-classes par-
tition G; hence (x). ¢
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40: Burnside's Lemma.
B Z|Stab(w){ £ {(g,w)‘gw:w} £ Z|Fix(g)
geq

weN
Counting the number of G-orbits, then,

|G| Z‘le

gelG

Counting cardinalities,

I #Orbits =

. {# of points fixed by an av—} 0O
" |erage element of G )
Proof. The number of G-orbits equals
Orb-S 1
M — 3 [Stab(w)].
G|
wEQ weN
Now apply (407) to earn (40%). ¢
Application: Coloring a cube’s faces. Color

the six faces of a cube red, white and blue; let Q be
the set of color-cubes; so || = 36.

How many distinct colorings are there, up to
We will use Burn-
side’s Lemma. The group, G, of orientation-preserving
rotations of the cube has 6 - 4 = 24 elts, and is group-

isomorphic to Sy.

orientation-preserving rotation?

In the 2 column, below, remark that

1+6+3+8+6=24=|G|.

What isom- How many |#Fix(g)|| F := #[Face-orbits

etry g? such g? — 3F. under (g)].

I 1 3% || 11 H14141+1

FaceRot 90° $.2=6 3% || 1+4+1

FaceRot 180° $.1=3 3 || 1+2+2+1

VertexRot 120°| $.2=38 3% || 343

EdgeRot 180° 2.1=6 3% || 2+2+2

The sum o - [1-36+6-3%+3-3*+8-32+6- 3%
equals 57. Using K many colors, the number of K-

colorings is 57 - [K® + 3K* + 12K3 +8K?, i.e, is

41 K2 [K*+3K2+ 12K + 8]/24. (Faces)

Coloring a cube’s vertices.
vertices of a cube.
colorings are there?

K-color the eight
How many rotationally-distinct

Class equation
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What isom- #{such g iFiX‘Eg N v=# [Vertex-orbits
etry g7 K. under (g)].

d 1 K& || 18]

FaceRot 90° 6 K? || [4%]

FaceRot 180° 3 K* || 124

VertexRot 120° 8 K* || [1?,3?]

EdgeRot 180° 6 K* || 124

The coeff of K* is 3+ 8+6 = 17. So the number of
vertex K-colorings is 5 - [K® + 17TK* + 6K?] i.e, is

42: K2 [K® 4+ 17K? + 6] /24, (Vertices)

Class equation

Consider a finite group acting on a finite set, G O (),
and let S be its set of orbits. The trivial assertion
[\52\ = 0es ]OU leads to a useful formula, when we
consider G acting on itself via conjugation. Firstly,
the Orbit-Stabilizer thm restates the circled as

_ G|
o= > [Stab(w)]’

weAll-Reps

where “ All-Reps” stands for “all orbit representatives”;
this is one token w per G-orbit. Now let

Fix(G) = ﬂgeG

This is the set of w in 1-point orbits, i.e, O(w) = {w}.
Let’s pull out these trivial orbits and define

Fix(g) .

OReps = All-Reps \ Fix(G) ;

this has one representative in each non-trivial orbit.
We have a primordial class equation,

N+ >

w€eOReps

: _ e
43: Q] = |Fix(G Staba ()]
Specializing to conjugation. We now let Q = G,
and have G act on €2 by conjugation. So we have
a homomorphism J:G—Sq by g — J,, where Jy(w)
equals gwg™!

Acting by conjugation, the stabilizer Stabg(w) is
the centralizer Cq(w). The orbit of w is called its
conjugacy class, written

©(w) = {gwg "' | g€ G}.
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A conjugacy class is “non-trivial” if it has more than
one point. So (©(h) is trivial IFF C(h) = G IFF
h € Z(G), where Z(G) = NpeqC(h) is the center
of G. Below, let “h € All-CC” mean to take one
representative h per (. Let NT-CC comprise one
representative per Non-Trivial (C.

44: Class-Equation Thm (After#24.17388).  For a finite

group G,
G|

44’: G| = ol

2@+ >
heNT-CC
Each summand |G|/|C(h)| is in [2..|G|], and is a
proper divisor of |G|. When G is abelian, the Y -sum
is empty, hence zero. O

Remark. A less useful form of the class-eqn does not separate
out the size-1 conjugacy classes. It says

@ = > ok

heAll-CC ‘C(h)‘

Proof.  Everything has been shown, except for the
observation that when the action is conjugation, then
Fix(G) is the center Z(G). ¢

We get a nice corollary when G is a “p-group”.

45: Center-pop Thm (P.403). Suppose |G| = p*, where
p is prime and L € Z,. Then Z(G) is non-trivial. (So
|Z(G)| = p* for some K € [1..L].) O

Proof. ~ The centralizer of each h € NT-CC(G) is
a proper subgroup, so p divides |G|/|C(h)|. Hence p
divides the sum on RhS(??'). So p divides |Z(G)|. 4

46: Cauchy's Thm for finite groups (P.406).  Suppose
N = |G| < co. If prime p o N, then there exists
y € G with Ord(y) = p. O

Proof. This holds when G = 1, so we may assume

(pr ¢ Ord(Q) then @ has an order-p element. j

holds for each group @ with |Q| < |G|. So WLOG
we may assume that each centralizer C(h), for h in
NT-CC(G), has order not a multiple of p. Thus p
divides the RhS(??’) sum. So p ¢ Ord(Z(Q)).

We may now apply (36), Cauchy's thm for abelian
groups, to Z(G), to get a order-p element. ¢

Class equation

Prof. JLF King

Remark. We get a nice progression of proofs. Note
that (37) uses induction on quotient groups, but does
not use the Class-Eqn, whereas Center-pop Thm (45)
uses the class equation but no induction. The above
Cauchy's thm (46), used quotient-induction to put the
class equation in play.

An jazzed-up (46) argument will give Sylow’s first
theorem. O

Defn. Fix a prime p. For each natnum k and finite
group @, define this proposition.

If p* o Ord(Q) then Q has a subgroup
of order p*.

P(k,Q):

We now show that this holds universally. O

47: Sylow’s First Thm. For each prime p, for each nat-
ural number k and finite group G, proposition P(k, G)
holds. O

Pf. Always P(0, ) holds, so fixing a K>1 and finite
group G, we show that P(K, G). We may assume that
Ord(G) o p¥ and

P(K—1,%) holds. Also P(K,Q) obtains,

48: for each group @ with |Q| < |G]|.

So WLOG p& $Cq(h), for each h in NT-CC(G). Thus
p divides the Y -sum in (??’). So p o Ord(Z(G)).

Cauchy's thm for abelian groups now gives us a sub-
group H C Z(G) of order-p. Every subgp of the cen-
ter is G-normal, so we have a quotient group @Q = %,
and pX~! divides its order. By (48), this @ has a
subgroup @’ of order p%—1.

Lastly, H' := Uveg U is a subgroup; it is a union of

H-cosets U. And |H'| = |H|-|Q'| = p-pX~1 =pF.¢
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Misc. counting results. We first state a theorem
just for pedagogical purposes.

49: Lemma. We have a subgroup H C Z(G). Sup-
pose that each two left H-cosets, Hi and Hs, have

representatives y; € H; such that y1ys. Then G is
abelian. O

Proof. Pick two arbitrary z; € G. By hyp., there are
y; € Hx; which commute. Write z; as h;y;. So x1ao
equals

yihily2ha] = y1y2hohy,  since by € Z(G),

= yayrhohy, since y2 S y1,
= yghgylhl, since hg c Z(G)
And this equals xox1. ¢

An immediate corollary is this “G mod Z” lemma.

50: G/Z Lemma. We have a subgroup H C Z(G); nec-
essarily H < G. If G/H is cyclic, then G is abelian.{

Remark. In the lemma, any of G, H or G/H may be infinite.

Hypothesis “G/H is cyclic” cannot be weakened to “G/H is
abelian”. For example, the 8 elt dihedral group G = Dy is
non-abelian. It has presentation

G = (RF|F°=e FRFR=¢, R' =e).

Its center is H := {e,R*} and the quotient group G/H is isomor-
phic to D2, which is abelian (= Z2xZ2). What goes wrong with
the proof, below? Well, the two H-cosets {R,R*} and {F,FR?}
have no representatives which commute. (|

Proof. Pick an elt z € G so that coset zH generates
the cyclic group @ = G/H. Each element of Q) has
form [zH]|". Since H is G-normal, [zH]" = z"H. So

we let 2" be our representative of coset [zH|". ¢
51: Lemma. In group G, suppose commuting ele-

ments a, ¢ have different prime orders p and q. Then

Ord(ac) = p-q. O

Normalizer mod Centralizer
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Proof. Let y := ac. Were y = e then p = Ord(a) =
Ord(c!) = Ord(e) = g; 3. So Ord(y) # 1.

Since a S ¢,
note
Ord(y) ¢ LCM(p,q) = p-q.

Were Ord(y) ¢ p, then e = [ac]P = cP, so p |e Ord(c).
L.e p ® g. Contradiction.

So Ord(y) &p. Ditto Ord(y) &¢g. But Ord(y) ¢ pg.
Thus Ord(y) = pgq, ¢

52: Prop'n (chap7#7.2F 144).
groups. Then

Suppose K. C G are

’K N L’ . ‘KL’ = ’KXL’. L.e, product-set

: K| - |L
f }KL| = |f(|ﬂ|L‘| ;needs K or L finite.
[Note: Product-set KL may or may not be a group.] O

Proof. Let P :=|K N L|. By definition, the map
s KxL—KL: (k,0)— kt

is onto. We now show that an elt kA € KL has pre-
cisely P many preimages under (1).

Each elt ¢ € KNL yields kc € K and ¢ '\ € L, with
product rc- ¢ '\ equaling k.

Conversely, a product k¢ = kA yields a common
element

k' =M'=c¢ inKnL.

And ke = k and ¢ '\ = £. So each c gives a preim-
age. ¢

Normalizer mod Centralizer

Call a posint N is Grouply unique if the cyclic group
is the only group of order N. We get a sufficient
condition for a product p - g to be grouply-unique.
Here is a routine generalization of an elegant proof
from Gallian.

53: Theorem. Suppose p < q are prime numbers st.
T p—1g—1 and pdg—1.

Then the only group G of order p - q is cyclic. %
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Setup. FTSOC we’ll assume that G is not cyclic. Our
goal is to exhibit commuting elts h, k € G of orders p
and g, resp.. Necessarily, the product hk will have
order pg. To produce this miracle, we’ll show that

G has a unique order-q subgp; call it K.

o Moreover, its centralizer Cq(K) is all of G.

The uniqueness implies that each elt h € G\ K (an h
exists, since pg > q) necessarily has order p. And h
commutes with each chosen k € K \ {e}. O

Proof of (54). We proceed in four steps.

[There exists an order-q element in G].
FTSOC, suppose no elt z € G~ {e} has order-g;
so each x has order-p. Since p is prime, the order-p
elts come in equivalence classes, {x,2?%,..., P71}, of
size p—1. Hence p—1 must divide Ord(G) — 1. But

pg—1 = [p—1]g+[q—1],

so this would imply p—1 ¢ g—1. But this 3&s (537).
The wupshot: There exists an order-q cyclic
subgp K C G.

[This order-q subgp is um’que}. Were  there
another, call it H, then

HnNnK = {e},
since g is prime. From (52t), then,
HK| = 42,

But inequality |G| > |H K| implies p > g; a contra-
diction. So there is but one order-q subgp.

LThe normalizer NG(K) = GJ. Conjugating K
must give a subgp isomorphic to K; thus is K itself.

[The centralizer is all of G}. Let C = Cg(K)
denote the centralizer. Since K is cyclic, it is abelian.

So K C C C G. By Lagrange's thm, then,

g < IC] < pg.

Since p is prime, ISTShow that |C| # gq.

Sylow Thms

Prof. JLF King

Were |C| = g, then the quotient gp

NG(K) note @G

[ K

would have order p. This quotient is gp-isomorphic
to a subgp of Aut(K'). Consequently

p ¢ Ord(Aut(K)).

But K is finite-cyclic, so Aut(K) is gp-isomorphic to
®(q),-). Thus p divides ¢(q) 2 g—1. But this
( ¢

annoys (53t). ¢

What are some examples of this thm?

Works: Fails: | Why

p<qll p<gq fails

5<T7| 3<q|2¢qqg-1
5<19|5<11| 5410
5<23 | 5<13 4.¢ 12
7T<11 || 7T<13 6o 12
T<17T||7<19| 6418

Sylow Thms

First a preliminary.

55: Lemma. Finite groups Y <1 G and prime p have

*: p T |Gry| e G
Suppose an x € G has Ord(z) = p*, for some
natnum L. Then x € Y. O

Proof. Let Q := % The homomorphism G—(Q) is
surjective, so ¢ = Ordg(zY) ¢ Ord(z) = p*. Thus
q is a power-of-p. But ¢ must divide Ord(Q)k, by
Lagrange, hence is coprime to p. The only such power-
of-pisgq=p°=1.SozY =Y,ie, z €Y. ¢

Remark. Dropping the normality Y <1 G can cause the result
to fail. With G := S3, let Y be the order-2 subgp generated by
a 2-cycle, and let x be a different 2-cycle. a
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56: Coro.  Suppose Y € Syl,(G), and H C G is a
p-group. If H C NG(Y'), then H C Y. O

Proof. Let N := NG(Y). Since Y is Sylow-p, index
|Gy| is coprime to p. But |G-y | = |G 'N|-|N. Y],
so p [N Y|. We may thus apply (55) to groups Y <
N, to conclude:

Ve € N: If Ord(z) is a power-of-p,
thenx €Y.

By hyp., H C N. Each x € H necessarily has order
a power-of-p, since H does. Sox € Y. Thus H C Y.¢

Conventions. In this section, G is always a
finite gp; let N := Ord(G). Fix a prime p and write
Ord(G) = p" - n, with n L p. A subgroup K C G is
a “p-Sylow subgroup of G” if #Ord(K) = p~. Our
standing convention is:

Subgroups Y, X C G are p-Sylow, and H C

o7 G is a p-subgroup.

Henceforth I use 5 to represent p and L = 4. So
625 o N $3125. Let Y be the set of 5-Sylow subgps
of G.

We will consider G acting on Y via conjugation:
For an x € G, the action of z on Y € Y is conjugation

K — 2Kz
58: Sylow Thm.

a: For each Po5 5% <625, there exists a G-subgroup H,
with #H = 5.

b: There exists a Sylow subgp. lLe, Y is non-empty.

c: Fach Pob subgp H lies inside some 5-Sylow sub-
group K. Indeed, for each G-orbit O C Y. there
exists a K € O with .

d: The 5-Sylow subgps Y form one single G-orbit.
Furthermore

#Y o  Ord(G)
Yy o= 1. O

Whoa! The fol. lemma and proof is broken.

Further results on Sylow subgroups
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59: Lemma. G D H finite groups The index
N(H)-c(H)
When H is a cyclic p-group, i.e

T =

divides |Aut(H)|.
|H| = p&+1, then

x: r o pf[p-1].
Suppose H € Syl,(G) is abelian. Then each of
\G-NG(H)|, WG(H). Ccq(H)|, |Ca(H): H]
is co-prime to p. Consequently:
T+ If H € Syl,(G) is cyclic then r 1 p—1.

If () and p is the smallest prime dividing |G|, then
{J\/'G(H) = Cg(H)], since (Lagrange) r divides |G|. ¢

Grouply-unique

Unfinished: as of 27Mar2024

Further results on Sylow subgroups

60: Thm. Consider finite gps G> N and H € Syl5(G).
Then the intersection H N N is €Syls(N). O

Proof. Since it is a subgroup of H, this HNN is a 5-gp.
So it has an extension N € Syls(N) with N > H N N.
This N is a 5-gp, so ¢t has an extension to a
G e Syls(G). Evidently I := GNN is a 5-group
and a subgp of N. But I D N , and N has maximum
cardinality among 5-subgps of N. Consequently

*3 GNN = N,

since the groups are finite.
By Sylow, G is conjugate to H; there is an z € G
with G2t = H. From (x), then,
eNzb = 2Gz' NnazNzt = HNN.
(xNaz™'=N since N < G.) Thus HNN has the cardinality
of a 5-Sylow subgp of N, so it is one. (And therefore
HNAN=N.) ¢

61: Theorem. Consider finite gps G > N and suppose
H € Syl;(G). Then % is a 5-Sylow subgp of % O

Proof.
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Normal subgroups

For this section N is a natnum. Here is the theorem
we are shooting for:

62: Thm. For each N € N~ {4}, the alternating
group Ay is simple. O

Remark. The alternating groups Ag, A1, Ao (i.e, compris-
ing all the even permutations) are each the triv-gp, hence
simple. Since Ord(A3)=3 is prime, group As is sim-
ple. So the first case we need consider is N > 5. Some
of the lemmas below hold for lower V.

Let a solo 3-cycle mean a perm whose cycle
lengths are 3, 1,1, V2 1. O

63: 3-cycle Lemma. The solo 3-cycles generate Apn.Q
Proof.

64: Lemma. Suppose m € Ay has a 3-cycle. Let K be
the smallest normal subgp of Ay owning 7. Then K
has a solo 3-cycle. O

Proof.

Notes to me. Bertrand Postulate.
Burnside's Normal p-complement Theorem.
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(I)N7 LP(N)v 1
<, see Group binrel, normal

1, see Group binrel, transverse

alternating group, 4
annihilator, 1
associates, 2
associative, 1

center of a group, Z(G), 12
class equation, 11
commutative, 1

conjugacy class, 11
conjugation map, 7

dihedral group, &
distributes-over, 1

field, 1
fixed-point, 10

Gaussian integers, 1
Group, 1
acting on a set, 10
alternating, 4
dihedral, 5
Klein-4, 5
of units, 1
stabilizer, 10
Group binrel
normal, 6
transverse, L, 6
Grouply unique, 13

identity element, 1
inner automorphism, 7
integral domain, 1
inverse element, 1
irreducible element, 2

Klein-4, see Group

INDEX FOR BASIC ALGEBRA
§Index for Basic Algebra
monoid, 1
orbit, 10
prime element, 2

ring, 1
annihilator, 1
domain, 1
zero-divisor, 1

semigroup, 1
stabilizer, see Group

torsion, see Group, torsion
transverse groups, L, 6

unit, 1, 2
U(N), 1
Urp, 1

Vierergruppe, see Group, Klein-4

ZD, i.e: zero-divisor
zero-divisor, 1, 2
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