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ABSTRACT:
Thursday.

Seat-of-the-pants proof scribbled out one

Overview. We work inside a fixed gp (G, -, €).
Henceforth let “cyclic group” mean a non-one-
point cyclic group.

Use PoP to mean Power Of a Prime. A
group G is a PoP-group if "G is a PoP. If
#G = p", for a posint N and prime p, then
we call G a “p-group”. The standing nota-
tional assumption is that [@ O M,F are groups}

and is a particular element. I use Greek
letters 3, 1,7y, v ... to name elements of groups.

Our goal is to prove the following classical the-
orem.

1: Fund. Theorem of Finite Abelian Groups (FToAG).

Fach finite abelian group G is isomorphic to a
finite cartesian product of cyclic groups. The
multiset of sizes of the factor groups is unique,
when counted appropriately.

Furthermore, if G is a p-group, then it is a finite
product of cyclic p-groups. O

The crux for FToAG is handling the special case
when G is a PoP-group.

Tools. Let “M_L F” indicate trivial intersection,
MNF = {e}; we say that M is transverse to F.
A collection {Cgy}peco of groups is a transverse
famaly, if: Each member Cy is transverse to the
subgroup generated by the other members.
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2: Fact. Suppose the gps € := {Cy}pco are inside
an abelian gp. Then C is a transverse family IFF
the only soln to eqn

1%

0cO

with each by € Cy, and all but
> finitely-many equaling €,

is every by = €; the trivial soln.

If we choose to enumerate € as Cy, Cs, ..., then
C is transverse IFF each n satisfies
C. L [C1-Cy--Cpyl. O

Use Ord(/3) for the smallest posint d st. 37 = ¢.
Use M-Ord(f3) for the smallest posint d such
that 3% € M. [So Ord(B) is M-Ord(8) when M = {e}]

3: Prop'n.  Imagine that d = M-Ord(3) is finite
and let y1 = 3% € M. Then

3" B)YNM = (u).
Consequently, for each subgroup F C M:
If (uy LF then (8) LF.

Furthermore, Ord(3) = M-Ord(8) - Ord(n). O

Pf. Let P comprize those posints j with
3 € M. Fixing a j € P, Bézout's lemma tells us
D = GCD(j,d) is in P. Thus D > Min(P) = d.
But D ¢ d, so D = d. Hence (3*), since
d=Dd j. ¢

Remark. Henceforth “5” represents a arbitrary
prime p. Use PoF to mean “power of 5.

In the case where G is a p-group, say p = 5,
then Lagrange's thm assures that both Ord(3) and
Ord(p) are PoFs; so M-Ord(3) is a PoF. O

4: Corollary.  Suppose that G is a 5-group and
M a subgp. Then both Ord(3) and M-Ord(3) are
PoFs. Further,

4% Ord(p) = 577,
where 5P := Ord(8) > M-Ord(B) =: 5/ define

natnums. O
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5: Generator Lemma. Suppose C is cyclic of or-
der 5*. Then each element v € C can be written

v o= "
for some C-generator v = ~(v) and some
K=K@)el0.L] 0

Proof. Pick a C-generator 7y and take the unique
d € [1..5%] st. y? = v. Factor d as d = n-5%
with K € [0..L] and n L 5. Hence n L |C|, so
element v := " generates C. ¢

Henceforth G is an abelian p-group.
51293

Prelims.
For specificity, suppose that p=5 and 7G =

We will successively pick cyclic subgroups
C1,Cy, ... C G. At stage T, let

FT = Cl'CQ'...'CT

be the product of the first 7" many chosen groups.
So Fy is the trivial group {e}. Each F7 is a group,
since G is abelian.

Construction. At stage T, with Fy_; chosen:

If there exists a cyclic group C L Fp_q,
then pick one such C of maximum
cardinality and let Cp = C.

Continue until no such group can be chosen.
For specificity, say that the process terminates
with

ClaCQ7"' aC26-

[By construction, this is a transverse family of cyclic
groups.| Let M = Fys be this maximal product.
We thus have

VB € G~ M: The cyclic group (3)
intersects M non-trivially.
Let RT = CT . CT+1 . CT+2 et 026 be the

product of the rest of the cyclic groups in our list.
[In consequence, Ry7 is the trivial group.] Thus

M = I:T—l : CT : RT+1 )

for each value T'=1,2, ..., 26.

Proof of FT of abelian p-groups
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Proof of FT of abelian p-groups

FTSOContradiction, suppose that M # G, and
consider an element

B € GM.
Then B > J > 1 where, thanks to (4),
5% .= Ord(B) and 57 :=M-Ordg3,

and p = 8% is in M. Now p # e, courtesy (6)
and (3*). So there is a unique stage T € [1..26]
with

*1 p € Rr~Rryy.

Maximize the stage. Arrange to have taken
a B3 € G ~ M which mazimizes the corresponding

stage T from (x). WELOGenerality, (T = 18). Let

F:= F17 and C := Clg and R:= R19 .

Le, p € C-R. Hence (u) L F. So
(8) LF,

thanks to Prop'n 3.

History. For specificity of notation, suppose
that #C = 5%. I claim that

It 9 > B.

After all, at stage T=18, transverse to F we
chose a cyclic subgroup with maximum cardinal-
ity. Since (B3) is transverse to F, yet we chose
C (=Cys), it must be that #C dominates #(3).

The Contradiction. We now find an element
B, in the BM coset satistying that

By € R 2 Ry.

This will contradict the maximality of stage T
The Generator Lemma allows us to write
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where v generates C with p € R, and K € [1..96].
It suffices to show this:

Goal: {The difference K — J is non—negative.j

Why does this suffice? Well, in that circumstance
Bo = [l B
is well-defined. Raising 3, to power 57 yields

5K—J

WP e = RPN e 2 )
And pisin R.
Establishing the Inequality.

Let X == Ord(y). Because 4" € C and C LR,
we have that [7°"]¥ = . In other words,

55.X e #C = 5%,
From (4*), recall that X = 57/, So

K+B-J > 9.

Inevitably, then, X' —.J > 96 — B. This latter
difference, thanks to (7), is non-negative. ¢

Uniqueness. Exercise.

The General Theorem

Suppose « and [ are commuting elements of some
group G, and have orders A and B. Then

Ord(ap) is a divisor of LCM(A, B).

An LCM of PoPs is a PoP, so each divisor is a PoP.
In an abelian G, then, the set

Wp — {I@ cG Ord(8) is some}

power of p

is a subgroup, for each prime p. Let PRIMES be
the set of all primes. Then the collection

8: {Wp ‘ p € PRIMES}

The General Theorem
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is a transverse family.”! So to complete the proof
of the Fund Thm of Finite Abelian Groups, we need
but prove the following.

Suppose that G has no elements of infinite
order. Then family (8) generates all of G.

In particular, this happens when G is finite.

Proof of (9). . Consider a non-identity element 3,
and factor its order as N = pit.. . .. p,E7; a
product of powers of distinct primes. We will pro-
duce elements v; € W, and integers 1/}, so that

VlMl'VQMQ'...'I/JMJ = ,6

How? Well, the numbers 7; := N/ [p;"7]. are col-
lectively relatively prime. Hence there exist inte-
gers M; with

J
i: ijlTij = 1.
The element
v; = /67"]‘

has order p;", so it is in W, . And () holds,
courtesy (I). ¢
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“IIf B is in W5 and also the subgroup generated by
{W,} 525, then the order of 3 is simultaneously a power
of 5, and is co-prime to 5. So 3 is €.
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