

Fund. Theorem of Finite Abelian Groups : Algebra

Jonathan L.F. King
 University of Florida, Gainesville FL 32611-2082, USA
 squash@ufl.edu
 Webpage <http://squash.1gainesville.com/>
 30 September, 2022 (at 17:44)

ABSTRACT: Seat-of-the-pants proof scribbled out one Thursday.

Overview. We work inside a fixed gp $(\mathbb{G}, \cdot, \varepsilon)$. Henceforth let “*cyclic group*” mean a non-one-point cyclic group.

Use **PoP** to mean Power Of a Prime. A group \mathbb{G} is a **PoP-group** if $\#\mathbb{G}$ is a PoP. If $\#\mathbb{G} = p^N$, for a posint N and prime p , then we call \mathbb{G} a “*p-group*”. The standing notational assumption is that $\mathbb{G} \supset \mathbb{M}, \mathbb{F}$ are groups and $\beta \in \mathbb{G}$ is a particular element. I use Greek letters $\beta, \mu, \gamma, \nu \dots$ to name elements of groups.

Our goal is to prove the following classical theorem.

1: Fund. Theorem of Finite Abelian Groups (FToAG). Each finite abelian group \mathbb{G} is isomorphic to a finite cartesian product of cyclic groups. The multiset of sizes of the factor groups is unique, when counted appropriately.

Furthermore, if \mathbb{G} is a *p*-group, then it is a finite product of cyclic *p*-groups. \diamond

The crux for FToAG is handling the special case when \mathbb{G} is a PoP-group.

Tools. Let “ $\mathbb{M} \perp \mathbb{F}$ ” indicate trivial intersection, $\mathbb{M} \cap \mathbb{F} = \{\varepsilon\}$; we say that \mathbb{M} is *transverse* to \mathbb{F} .

A collection $\{\mathbb{C}_\theta\}_{\theta \in \Theta}$ of groups is a *transverse family*, if: *Each* member \mathbb{C}_θ is transverse to the subgroup generated by the other members.

2: Fact. Suppose the gps $\mathcal{C} := \{\mathbb{C}_\theta\}_{\theta \in \Theta}$ are inside an **abelian** gp. Then \mathcal{C} is a transverse family IFF the only soln to eqn

$$\left[\prod_{\theta \in \Theta} b_\theta \right] = \varepsilon, \quad \text{with each } b_\theta \in \mathbb{C}_\theta, \text{ and all but finitely-many equaling } \varepsilon,$$

is every $b_\theta = \varepsilon$; the trivial soln.

If we choose to enumerate \mathcal{C} as $\mathbb{C}_1, \mathbb{C}_2, \dots$, then \mathcal{C} is transverse IFF each n satisfies

$$\mathbb{C}_n \perp [\mathbb{C}_1 \cdot \mathbb{C}_2 \cdots \mathbb{C}_{n-1}]. \quad \diamond$$

Use $\text{Ord}(\beta)$ for the smallest posint d st. $\beta^d = \varepsilon$.

Use $\text{M-Ord}(\beta)$ for the smallest posint d such that $\beta^d \in \mathbb{M}$. [So $\text{Ord}(\beta)$ is $\text{M-Ord}(\beta)$ when $\mathbb{M} := \{\varepsilon\}$.]

3: Prop'n. Imagine that $d := \text{M-Ord}(\beta)$ is finite and let $\mu := \beta^d \in \mathbb{M}$. Then

$$3^*: \quad \langle \beta \rangle \cap \mathbb{M} = \langle \mu \rangle.$$

Consequently, for each subgroup $\mathbb{F} \subset \mathbb{M}$:

$$\text{If } \langle \mu \rangle \perp \mathbb{F} \text{ then } \langle \beta \rangle \perp \mathbb{F}.$$

Furthermore, $\text{Ord}(\beta) = \text{M-Ord}(\beta) \cdot \text{Ord}(\mu)$. \diamond

Pf. Let P comprise those posints j with $\beta^j \in \mathbb{M}$. Fixing a $j \in P$, Bézout's lemma tells us $D := \text{GCD}(j, d)$ is in P . Thus $D \geq \text{Min}(P) = d$. But $D \nmid d$, so $D = d$. Hence (3*), since $d = D \bullet j$. \diamond

Remark. Henceforth “5” represents a arbitrary prime p . Use **PoF** to mean “power of 5”.

In the case where \mathbb{G} is a *p*-group, say $p = 5$, then Lagrange's thm assures that both $\text{Ord}(\beta)$ and $\text{Ord}(\mu)$ are PoFs; so $\text{M-Ord}(\beta)$ is a PoF. \square

4: Corollary. Suppose that \mathbb{G} is a 5-group and \mathbb{M} a subgp. Then both $\text{Ord}(\beta)$ and $\text{M-Ord}(\beta)$ are PoFs. Further,

$$4^*: \quad \text{Ord}(\mu) = 5^{B-J},$$

where $5^B := \text{Ord}(\beta) \geq \text{M-Ord}(\beta) =: 5^J$ define natnums. \diamond

5: Generator Lemma. Suppose \mathbf{C} is cyclic of order 5^L . Then each element $\nu \in \mathbf{C}$ can be written

$$\nu = \gamma^{5^K}$$

for some C-generator $\gamma = \gamma(\nu)$ and some $K = K(\nu) \in [0..L]$. \diamond

Proof. Pick a \mathbf{C} -generator γ_0 and take the unique $d \in [1..5^L]$ st. $\gamma_0^d = \nu$. Factor d as $d = n \cdot 5^K$ with $K \in [0..L]$ and $n \perp 5$. Hence $n \perp |\mathbf{C}|$, so element $\gamma := \gamma_0^n$ generates \mathbf{C} . \blacklozenge

Prelims. Henceforth \mathbb{G} is an abelian p -group. For specificity, suppose that $p=5$ and $\#\mathbb{G} = 5^{1293}$

We will successively pick cyclic subgroups $\mathbf{C}_1, \mathbf{C}_2, \dots \subset \mathbb{G}$. At stage T , let

$$\mathsf{F}_T := \mathbf{C}_1 \cdot \mathbf{C}_2 \cdot \dots \cdot \mathbf{C}_T$$

be the product of the first T many chosen groups. So F_0 is the trivial group $\{\epsilon\}$. Each F_T is a group, since \mathbb{G} is abelian.

Construction. At stage T , with F_{T-1} chosen:

If there exists a cyclic group $\mathbf{C} \perp \mathsf{F}_{T-1}$, then pick one such \mathbf{C} of **maximum cardinality** and let $\mathbf{C}_T := \mathbf{C}$.

Continue until no such group can be chosen.

For specificity, say that the process terminates with

$$\mathbf{C}_1, \mathbf{C}_2, \dots, \mathbf{C}_{26}.$$

[By construction, this is a transverse family of cyclic groups.] Let $\mathbf{M} := \mathsf{F}_{26}$ be this maximal product. We thus have

6: $\forall \beta \in \mathbb{G} \setminus \mathbf{M}$: The cyclic group $\langle \beta \rangle$ intersects \mathbf{M} non-trivially.

Let $\mathsf{R}_T := \mathbf{C}_T \cdot \mathbf{C}_{T+1} \cdot \mathbf{C}_{T+2} \cdot \dots \cdot \mathbf{C}_{26}$ be the product of the rest of the cyclic groups in our list. [In consequence, R_{27} is the trivial group.] Thus

$$\mathbf{M} = \mathsf{F}_{T-1} \cdot \mathbf{C}_T \cdot \mathsf{R}_{T+1},$$

for each value $T = 1, 2, \dots, 26$.

Proof of FT of abelian p -groups

FTSOContradiction, suppose that $\mathbf{M} \neq \mathbb{G}$, and consider an element

$$\beta \in \mathbb{G} \setminus \mathbf{M}.$$

Then $B \geq J \geq 1$ where, thanks to (4),

$$5^B := \text{Ord}(\beta) \quad \text{and} \quad 5^J := \mathbf{M}\text{-Ord}\beta,$$

and $\mu := \beta^{5^J}$ is in \mathbf{M} . Now $\mu \neq \epsilon$, courtesy (6) and (3*). So there is a *unique* stage $T \in [1..26]$ with

$$* : \mu \in \mathsf{R}_T \setminus \mathsf{R}_{T+1}.$$

Maximize the stage. Arrange to have taken a $\beta \in \mathbb{G} \setminus \mathbf{M}$ which *maximizes the corresponding stage T* from (*). WELOGenerality, $(T = 18)$. Let

$$\mathsf{F} := \mathsf{F}_{17} \quad \text{and} \quad \mathbf{C} := \mathbf{C}_{18} \quad \text{and} \quad \mathsf{R} := \mathsf{R}_{19}.$$

I.e., $\mu \in \mathbf{C} \cdot \mathsf{R}$. Hence $\langle \mu \rangle \perp \mathsf{F}$. So

$$\langle \beta \rangle \perp \mathsf{F},$$

thanks to Prop'n 3.

History. For specificity of notation, suppose that $\#\mathbf{C} = 5^{96}$. I claim that

$$7: \quad 96 \geq B.$$

After all, at stage $T=18$, transverse to F we chose a cyclic subgroup with maximum cardinality. Since $\langle \beta \rangle$ is transverse to F , yet we chose \mathbf{C} ($=\mathbf{C}_{18}$), it must be that $\#\mathbf{C}$ dominates $\#\langle \beta \rangle$.

The Contradiction. We now find an element β_0 in the $\beta\mathbf{M}$ coset satisfying that

$$\beta_0^{5^J} \in \mathsf{R} \stackrel{\text{note}}{=} \mathsf{R}_{19}.$$

This will contradict the maximality of stage T .

The Generator Lemma allows us to write

$$\mu = \gamma^{5^K} \cdot \rho,$$

where γ generates \mathbf{C} with $\rho \in \mathbb{R}$, and $K \in [1..96]$. It suffices to show this:

Goal: The difference $K - J$ is non-negative.

Why does this suffice? Well, in that circumstance

$$\beta_0 := [\gamma^{-1}]^{5^{K-J}} \cdot \beta$$

is well-defined. Raising β_0 to power 5^J yields

$$[\gamma^{-1}]^{5^K} \cdot \mu = [\gamma^{-1}]^{5^K} \cdot \gamma^{5^K} \cdot \rho \stackrel{\text{note}}{=} \rho.$$

And ρ is in \mathbb{R} .

Establishing the Inequality.

Let $X := \text{Ord}(\mu)$. Because $\gamma^{5^K} \in \mathbf{C}$ and $\mathbf{C} \perp \mathbb{R}$, we have that $[\gamma^{5^K}]^X = \varepsilon$. In other words,

$$5^K \cdot X \bullet \# \mathbf{C} = 5^{96}.$$

From (4*), recall that $X = 5^{B-J}$. So

$$K + B - J \geq 96.$$

Inevitably, then, $K - J \geq 96 - B$. This latter difference, thanks to (7), is non-negative. \blacklozenge

Uniqueness. Exercise.

is a transverse family.⁹¹ So to complete the proof of the Fund Thm of Finite Abelian Groups, we need but prove the following.

9: Suppose that \mathbb{G} has no elements of infinite order. Then family (8) generates all of \mathbb{G} .

In particular, this happens when \mathbb{G} is finite.

Proof of (9). Consider a non-identity element β , and factor its order as $N = p_1^{E_1} \cdots p_J^{E_J}$; a product of powers of distinct primes. We will produce elements $\nu_j \in \mathbf{W}_{p_j}$ and integers M_j , so that

$$\dagger: \quad \nu_1^{M_1} \cdot \nu_2^{M_2} \cdots \nu_J^{M_J} = \beta.$$

How? Well, the numbers $r_j := N / [p_j^{E_j}]$ are collectively relatively prime. Hence there exist integers M_j with

$$\ddagger: \quad \sum_{j=1}^J r_j M_j = 1.$$

The element

$$\nu_j := \beta^{r_j}$$

has order $p_j^{E_j}$, so it is in \mathbf{W}_{p_j} . And (\dagger) holds, courtesy (\ddagger). \blacklozenge

Filename: Problems/Algebra/abelian-gps.latex
As of: Thursday 23Feb2006. Typeset: 30Sep2022 at 17:44.

The General Theorem

Suppose α and β are *commuting elements* of some group \mathbb{G} , and have orders A and B . Then

$\text{Ord}(\alpha\beta)$ is a divisor of $\text{LCM}(A, B)$.

An LCM of PoPs is a PoP, so each divisor is a PoP. In an **abelian** \mathbb{G} , then, the set

$$\mathbf{W}_p := \left\{ \beta \in \mathbb{G} \mid \begin{array}{l} \text{Ord}(\beta) \text{ is some} \\ \text{power of } p \end{array} \right\}$$

is a **subgroup**, for each prime p . Let PRIMES be the set of all primes. Then the collection

$$8: \quad \left\{ \mathbf{W}_p \mid p \in \text{PRIMES} \right\}$$

⁹¹If β is in \mathbf{W}_5 and also the subgroup generated by $\{\mathbf{W}_p\}_{p \neq 5}$, then the order of β is simultaneously a power of 5, and is co-prime to 5. So β is ε .