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Abstract: Seat-of-the-pants proof scribbled out one
Thursday.

Overview. We work inside a fixed gp (((G, ·, ε))).
Henceforth let “cyclic group” mean a non–one-
point cyclic group.

Use PoP to mean Power Of a Prime. A
group G is a PoP-group if #G is a PoP. If
#G = pN , for a posint N and prime p, then
we call G a “p-group” . The standing nota-
tional assumption is that

�� ��G ⊃ M,F are groups
and

�� ��β ∈ G is a particular element. I use Greek
letters β, µ, γ, ν . . . to name elements of groups.

Our goal is to prove the following classical the-
orem.

1: Fund. Theorem of Finite Abelian Groups (FToAG).
Each finite abelian group G is isomorphic to a
finite cartesian product of cyclic groups. The
multiset of sizes of the factor groups is unique,
when counted appropriately.

Furthermore, if G is a p-group, then it is a finite
product of cyclic p-groups. ♦

The crux for FToAG is handling the special case
when G is a PoP-group.

Tools. Let “M⊥F” indicate trivial intersection,
M ∩ F = {ε}; we say that M is transverse to F.

A collection {Cθ}θ∈Θ of groups is a transverse
family, if: Each member Cθ is transverse to the
subgroup generated by the other members.

2: Fact. Suppose the gps C := {Cθ}θ∈Θ are inside
an abelian gp. Then C is a transverse family IFF
the only soln to eqn[∏

θ∈Θ

bθ

]
= ε ,

with each bθ ∈ Cθ, and all but
finitely-many equaling ε,

is every bθ = ε; the trivial soln.
If we choose to enumerate C as C1,C2, . . . , then

C is transverse IFF each n satisfies

Cn ⊥
[
C1 ·C2 · · ·Cn−1

]
. ♦

Use Ord(β) for the smallest posint d st. βd = ε.
Use M-Ord(β) for the smallest posint d such

that βd ∈ M. [So Ord(β) is M-Ord(β) when M := {ε}.]

3: Prop’n. Imagine that d := M-Ord(β) is finite
and let µ := βd ∈ M. Then

〈β〉 ∩M = 〈µ〉 .3∗:

Consequently, for each subgroup F ⊂ M:

If 〈µ〉⊥ F then 〈β〉⊥ F .

Furthermore, Ord(β) = M-Ord(β) ·Ord(µ). ♦

Pf. Let P comprize those posints j with
βj ∈ M. Fixing a j ∈ P , Bézout’s lemma tells us
D := GCD(j, d) is in P . Thus D ≥ Min(P ) = d.
But D •| d, so D = d. Hence (3∗), since
d = D •| j. �

Remark. Henceforth “5” represents a arbitrary
prime p. Use PoF to mean “power of 5”.

In the case where G is a p-group, say p = 5,
then Lagrange’s thm assures that both Ord(β) and
Ord(µ) are PoFs; so M-Ord(β) is a PoF. �

4: Corollary. Suppose that G is a 5-group and
M a subgp. Then both Ord(β) and M-Ord(β) are
PoFs. Further,

Ord(µ) = 5B−J ,4∗:

where 5B := Ord(β) ≥ M-Ord(β) =: 5J define
natnums. ♦
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5: Generator Lemma. Suppose C is cyclic of or-
der 5L. Then each element ν ∈ C can be written

ν = γ5K

for some C-generator γ = γ(ν) and some
K = K(ν) ∈ [0 .. L]. ♦

Proof. Pick a C-generator γ0 and take the unique
d ∈ [1 .. 5L] st. γ0

d = ν. Factor d as d = n · 5K
with K ∈ [0 .. L] and n ⊥ 5. Hence n ⊥ |C|, so
element γ := γ0

n generates C. �

Prelims. Henceforth G is an abelian p-group.
For specificity, suppose that p=5 and #G = 51293

We will successively pick cyclic subgroups
C1,C2, . . . ⊂ G. At stage T , let

FT := C1 ·C2 · . . . ·CT

be the product of the first T many chosen groups.
So F0 is the trivial group {ε}. Each FT is a group,
since G is abelian.

Construction. At stage T , with FT−1 chosen:

If there exists a cyclic group C⊥ FT−1,
then pick one such C of maximum
cardinality and let CT := C.

Continue until no such group can be chosen.
For specificity, say that the process terminates

with
C1 ,C2 , . . . ,C26 .

[By construction, this is a transverse family of cyclic
groups.] Let M := F26 be this maximal product.
We thus have

∀β ∈ GrM: The cyclic group 〈β〉
intersects M non-trivially.

6:

Let RT := CT · CT+1 · CT+2 · . . . · C26 be the
product of the rest of the cyclic groups in our list.
[In consequence, R27 is the trivial group.] Thus

M = FT−1 ·CT · RT+1 ,

for each value T = 1, 2, . . . , 26.

Proof of FT of abelian p-groups

FTSOContradiction, suppose that M 6= G, and
consider an element

β ∈ GrM .

Then B ≥ J ≥ 1 where, thanks to (4),

5B := Ord(β) and 5J := M-Ordβ ,

and µ := β5J is in M. Now µ 6= ε, courtesy (6)
and (3∗). So there is a unique stage T ∈ [1 .. 26]
with

µ ∈ RT r RT+1 .∗:

Maximize the stage. Arrange to have taken
a β ∈ GrM which maximizes the corresponding
stage T from (∗). WELOGenerality,

�� ��T = 18 . Let

F := F17 and C := C18 and R := R19 .

I.e, µ ∈ C · R. Hence 〈µ〉⊥ F. So

〈β〉 ⊥ F ,

thanks to Prop’n 3.

History. For specificity of notation, suppose
that #C = 596. I claim that

96 ≥ B .7:

After all, at stage T=18, transverse to F we
chose a cyclic subgroup with maximum cardinal-
ity. Since 〈β〉 is transverse to F, yet we chose
C (=C18), it must be that #C dominates #〈β〉.

The Contradiction. We now find an element
β0 in the βM coset satisfying that

β5J

0 ∈ R
note
=== R19 .

This will contradict the maximality of stage T .
The Generator Lemma allows us to write

µ = γ5K · ρ ,
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where γ generates C with ρ ∈ R, and K ∈ [1 .. 96].
It suffices to show this:�� ��The difference K − J is non-negative.Goal:

Why does this suffice? Well, in that circumstance

β0 := [γ 1]5
K−J · β

is well-defined. Raising β0 to power 5J yields

[γ 1]5
K · µ = [γ 1]5

K · γ5K · ρ note
=== ρ .

And ρ is in R.

Establishing the Inequality.
Let X := Ord(µ). Because γ5K ∈ C and C ⊥ R,
we have that [γ5K ]X = ε. In other words,

5K ·X |• #C = 596 .

From (4∗), recall that X = 5B−J . So

K +B − J ≥ 96 .

Inevitably, then, K − J ≥ 96−B. This latter
difference, thanks to (7), is non-negative. �

Uniqueness. Exercise.

The General Theorem
Suppose α and β are commuting elements of some
group G, and have orders A and B. Then

Ord(αβ) is a divisor of LCM(A,B).

An LCM of PoPs is a PoP, so each divisor is a PoP.
In an abelian G, then, the set

Wp :=
{
β ∈ G

∣∣∣ Ord(β) is some
power of p

}
is a subgroup, for each prime p. Let Primes be
the set of all primes. Then the collection{

Wp

∣∣∣ p ∈ Primes
}

8:

is a transverse family.♥1 So to complete the proof
of the Fund Thm of Finite Abelian Groups, we need
but prove the following.

Suppose that G has no elements of infinite
order. Then family (8) generates all of G.9:

In particular, this happens when G is finite.

Proof of (9). . Consider a non-identity element β,
and factor its order as N = pE1

1 · . . . · pJEJ ; a
product of powers of distinct primes. We will pro-
duce elements νj ∈Wpj

and integers Mj, so that

ν1
M1 · ν2

M2 · . . . · νJMJ = β .†:

How? Well, the numbers rj := N
/
[pjEj ]. are col-

lectively relatively prime. Hence there exist inte-
gers Mj with ∑J

j=1
rjMj = 1 .‡:

The element
νj := βrj

has order pjEj , so it is in Wpj
. And (†) holds,

courtesy (‡). �
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♥1If β is in W5 and also the subgroup generated by
{Wp}p 6=5, then the order of β is simultaneously a power
of 5, and is co-prime to 5. So β is ε.
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