

Hello. [This is much longer than the actual exam. The actual exam will have *one* or *no* essay question.] Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

A1: Show no work.

a Fnc $y_\alpha(t) :=$
is the gen. soln to $\frac{dy}{dt} = \left[\frac{-1}{6} y^4 \cdot 3^t \right]$.

[Hint: SoV.] The fnc satisfying init.-cond. $y_\alpha(0) = 1$ has $\alpha =$

[This has a bit more computation than I would put on the actual exam. Easier is if 3^t is replaced by e^t .]

b Function $h()$ satisfies $2h'' + h' - h = 0$,
and initial conditions $h(0) = 7$ and $h'(0) = 2$. So
 $h(t) = \alpha e^{At} + \beta e^{Bt}$, for numbers

$\alpha =$, $A =$, $\beta =$, $B =$

c $[\mathbf{D} - 7\mathbf{I}]^2(x^5 \cdot e^{7x}) =$

d Blanks $\in \mathbb{R}$. So $\frac{1}{2+3i} =$ + $i \cdot$ [.....].
And $\frac{5-i}{2+3i} =$ + $i \cdot$ [.....].

By the way, $|5-3i| =$

e We have $[6\cos(4t) - 10\sin(4t)]e^{7t} = \alpha e^{Ut} + \beta e^{\bar{U}t}$, for [possibly complex] numbers

$\alpha =$, $\beta =$, $U =$

f Number $6 \cdot \exp\left(i \cdot \frac{5\pi}{3}\right)$ equals $x + yi$ for reals

With $v := \exp(-2 + 5i)$, then $|v| =$

And $|v|$ lies in circle the correct interval

g $[0, \frac{1}{2}), [\frac{1}{2}, 1), [1, 2), [2, 4), [4, 8), [8, \infty)$.

h The solutions to $3x^2 = 2 - 2x$ are $x =$

i With $f(t) := \int_{7t}^{\exp(5t)} \cos(x^2) dx$, then $f'(t)$ equals

[Hint: Chain rule and Fund. Thm of Calculus.]

i For $x > 0$, let $B(x) := \sin(7x)^x$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals

OYOP: In grammatical English sentences, write your essay on every **third** line (usually), so that I can easily write between the lines. Do **not** restate the question.

A2: Showing all the steps in the FOLDE algorithm, compute the general solution $y()$ to

$$x^4 \frac{dy}{dx} + x^3 y = 8x^7 + x^6$$

Also write it here, as

$y_\alpha(x) =$

A3: Showing all the steps in the FOLDE algorithm, compute the general solution $y()$ to

$$\frac{dy}{dx} - \frac{y}{x} = x \cdot \sin(x)$$

Also write it here, as

$y_\alpha(x) =$

A1: _____ 110pts

A2: _____ 85pts

A3: _____ 85pts

Total: _____ 280pts

Please PRINT your *name* and *ordinal*. Ta:

Ord:

.....

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature:

.....