

Staple!

Number Theory
MAS4203

Home-A

Prof. JLF King
Touch: 2Jul2018**Hello.** Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by 4:30PM, Tuesday, 07Feb2006.**A1:** Show no work.**a** $\varphi(121000) =$ Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \cdots$ of primes to positive powers, with $p_1 < p_2 < \dots$.**b** Easily, $\varphi(25) =$. Consequently, $27^{2006} \equiv_{25} \in [0..25)$. [Hint: Fermat, Euler, working mod 25.]**c** Let $G := \text{Gcd}(70, 42, 30)$ and $H := \text{Gcd}(105, 70, 42, 30)$. So $G =$ and $H =$. Use the LBolt Alg twice to find three integers with $\cdot 70 + \cdot 42 + \cdot 30 = G$. Now find four integers with $\cdot 105 + \cdot 70 + \cdot 42 + \cdot 30 = H$.**d+** As polynomials in $\mathbb{Z}_7[x]$, let

$$B(x) := 6x^3 - x^2 + x - 2;$$

$$C(x) := 3x^2 + 7x - 6.$$

Write t.fol polys, using coeffs in $[-3..3]$. Compute quotient and remainder polynomials

$$q(x) = \quad \& r(x) = ,$$

with $B = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

e+ With B, C from above, polys in $\mathbb{Z}_7[x]$: Let D be $\text{Gcd}(B, C)$. Write these three polys using coeffs in $[-3..3]$: The monic $D(x) =$.Compute polys $S(x) =$,

$$T(x) = \quad \text{st. } [S \cdot B] + [T \cdot C] = D.$$

A2: Showing all the steps, compute the Jacobi symbol $\left(\frac{1003}{5775}\right) =$. Now compute by a *different* method.**A3:** Show all the interesting steps, in the repeated-squaring algorithm, to compute $k \in [0..77)$, where $7^{707} \equiv_{77} k =$

.....

A4: Fix integers $N \geq 3$ and $B \perp N$. **i** Prove that $\varphi(N)$ is even.

Team A

iiLet $L = L_N(B)$ be the number of $x \in [1.. \lfloor \frac{N}{2} \rfloor]$ such that $x^2 \equiv_N B$. Prove that

$$* : \prod(\Phi(N)) \equiv_N [-1]^L \cdot B^{\varphi(N)/2},$$

by mimicking the pairing/involution argument from class.
[Hint: Does the N -even case need special treatment?]**iii**Do something extra. E.g, with N fixed, how many different values does $L_N(B)$ take on, as B varies over $\Phi(N)$? Or: Can you find values of N where $L_N(1)$ is really big? Or: (Do something creative.)

End of Home-A

A1: _____ 85pts**A2:** _____ 60pts**A3:** _____ 65pts**A4:** _____ 85pts**Total:** _____ 295pts**HONOR CODE:** "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord

Ord: _____

Ord: _____

Ord: _____