

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by 11:45AM, Monday, 13Feb2006.

A'1: Show no work.

a $\varphi(169000) =$

Express your answer a product $p_1^{e_1} \cdot p_2^{e_2} \cdots$ of primes to powers.

b Easily, $\varphi(625) =$. Consequently,

$28^{2106} \equiv_{625} \in [0..625)$. [Hint: Fermat, Euler, working mod 625.]

c⁺ $G := \text{Gcd}(255, 33) =$. A pair (S, T) is **good** if both are integers, and $[255 \cdot S] + [33 \cdot T] = G$. Use the LBolt Alg to produce a good pair $S =$, $T =$. Give formulas $S(k) =$

and $T(k) =$ which obtains all good pairs, as k ranges over the integers.

d As polynomials in $\mathbb{Z}_{11}[x]$, let

$$B(x) := 6x^3 - x^2 + x - 2; \\ C(x) := 3x^2 + 7x - 6.$$

Write t.fol polys, using coeffs in $[-5..5]$. Compute quotient and remainder polynomials

$q(x) =$ & $r(x) =$,
with $\bar{B} = [q \cdot \bar{C}] + \bar{r}$ and $\text{Deg}(r) < \text{Deg}(C)$,

e⁺ (With B, C from above, polys in $\mathbb{Z}_7[x]$.) Let D be $\text{Gcd}(B, C)$. Using coeffs in $[-5..5]$: $D(x) =$.

Compute polys $S(x) =$,

$T(x) =$ st. $[S \cdot \bar{B}] + [T \cdot \bar{C}] = \bar{D}$.

A'2: Give, with careful proof, a complete list of mod-12 residues $\{ \}$, so that 3 is a p -QR iff oddprime $p \equiv_{12}$ to some elt of the list. [Hint: Use the Jacobi symbol $(\frac{3}{p})$ and quadratic reciprocity.]

A'3: The number $p := 1217$ is prime. Use the “repeated squaring, mod p ” technique to compute the Legendre symbols $(\frac{5}{p})$ and $(\frac{19}{p})$, showing me the steps. Which of $\{5, 19\}$ has a mod-1217 square-root?

A'4: Prove, for odd $n \in [3.. \infty)$, that the Jacobi symbol

$$\left(\frac{2}{n}\right) = [-1]^{\frac{n^2-1}{8}}.$$

You many use without proof that for an oddprime p , the Legendre symbol $(\frac{2}{p})$ is +1 if $p \equiv_8 +1$, and $(\frac{2}{p}) = -1$ otherwise. Hint: You may want to prove this Lemma: For odd posints r and s ,

$$\frac{r^2 - 1}{8} + \frac{s^2 - 1}{8} \equiv_2 \frac{r^2 s^2 - 1}{8}.$$

A'1: _____ 85pts

A'2: _____ 65pts

A'3: _____ 60pts

A'4: _____ 85pts

Total: _____ 295pts

Please PRINT your **name** and **ordinal**. Ta:

Ord: _____

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor.”*

Signature: _____
