

Sets and Logic  
MHF3202 139A

## Home-A

Prof. JLF King  
Wedn, 21Sep2022

Due ~~Wedn., 28Sep2022~~ [UF closed by hurricane Ian]  
**BoC, Monday, 03Oct2022**, wATMP! **Print**  
 this **problem-sheet**; it is the first page of your write-up, with the blanks filled in (handwritten). Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE**  $\neq \{\} \neq 0$ . [Put ordinal and Team-# and sign HONOR CODE.]

**A1:** Show no work.

**a**  $B^E = \sum_{j=0}^{59} \binom{59}{j} \cdot 4^{2j}$ , for posints  $B = \underline{\dots}$  &  $E = \underline{\dots}$

**b**  $\forall x, z \in \mathbb{Z}$  with  $x < z$ ,  $\exists y \in \mathbb{Z}$  st.:  $x < y < z$ .  $T \quad F$   
 $\forall x, z \in \mathbb{Q}$  with  $x \neq z$ ,  $\exists y \in \mathbb{R}$  st.:  $x < y < z$ .  $T \quad F$   
 For all sets  $\Omega$ , there exists a fnc  $f: \mathbb{R} \rightarrow \Omega$ .  $T \quad F$

**c** The **Threeish-numbers** comprise  $\mathcal{T} := 1 + 3\mathbb{N}$ .  
 $\mathcal{T}$ -number 385 <sup>note</sup>  $\equiv 35 \cdot 11$  is  **$\mathcal{T}$ -irreducible**:  $T \quad F$

Threeish  $N := 85$  is **not  $\mathcal{T}$ -prime** because  $\mathcal{T}$ -numbers  $J := \underline{\dots}$  and  $K := \underline{\dots}$  satisfy  
 that  $N \bullet [J \cdot K]$ , yet  $N \nmid J$  and  $N \nmid K$ .

Also,  $\mathcal{T}$ -GCD(175, 70) =  $\underline{\dots}$ .

**d** On  $\Omega := [1..29] \times [1..29]$ , define binary-relation **C** by:  
 $(x, \alpha) \mathbf{C} (y, \beta) \text{ IFF } x \cdot \beta \equiv_{30} y \cdot \alpha$ . Statement  
 “Relation **C** is an equivalence relation” is:  $T \quad F$

Carefully TYPE your two essays, double-spaced. I suggest LATEX, but other systems are ok too.

**A2:** Let **E<sub>n</sub>** be the equilateral triangle with side-length  $2^n$ . This **E<sub>n</sub>** can be tiled in an obvious way by  $4^n$  many little-triangles [copies of **E<sub>0</sub>**]; see picture on blackboard. The “**punctured E<sub>n</sub>**”, written **Ē<sub>n</sub>**, has its topmost copy of **E<sub>0</sub>** removed.

A **(trape)zoid**, **T**, comprises three copies of **E<sub>0</sub>** glued together in a row, rightside-up, upside-down, rightside-up. [A **zoid-tiling** allows all six rotations of **T**.]

**i** PROVE: For each  $n$ , board **Ē<sub>n</sub>** admits a zoid-tiling.

**ii** Let **Δ<sub>k</sub>** be the equilateral triangle of sidelength  $k$ ; so **E<sub>n</sub>** is **Δ<sub>2<sup>n</sup></sub>**. Triangle **Δ<sub>k</sub>** comprises  $k^2$  little-triangles.

For what values of  $k$  does **Δ<sub>k</sub>** admit a zoid-tiling?For which  $k$  does **Δ̄<sub>k</sub>** admit a zoid-tiling?**iii**

An **Lmino** (pron. “ell-mino”) comprises three  squares in an “L” shape (all four orientations are allowed).

Let **S<sub>n</sub>** be the  $2^n \times 2^n$  square board, comprising  $4^n$  **squareis** (little squares). Have **S̄<sub>n</sub>** be the board with one corner square removed. Shown in class is an inductive proof that each **S̄<sub>n</sub>** is Lmino-tilable (by  $[4^n - 1]/3$  Lminos, of course). Further, with **S̄'<sub>n</sub>** denoting **S<sub>n</sub>** with an *arbitrary* puncture, we proved that every **S̄'<sub>n</sub>** is Lmino-tilable.

Generalize this to three-dimensions. Let **C<sub>n</sub>** denote the  $2^n \times 2^n \times 2^n$  cube, **C̄<sub>n</sub>** the corner-punctured cube, and let **C̄'<sub>n</sub>** be **C<sub>n</sub>** but with an arbitrary **cubie** removed.

What is the 3-dimensional analog of an Lmino? Calling it a “**3-mino**”, how many cubies does it have? [Provide a drawing of your 3-mino.] PROVE: **Every C̄'<sub>n</sub> admits a 3-mino-tiling**. [Provide also pictures showing your ideas.]

**iv**

Generalize to  $K$ -dim(ensional) space, with **C<sub>n,K</sub>** being the  $2^n \times K \times 2^n$  cube, having  $[2^n]^K = 2^{nK}$  many  $K$ -dim’al cubies. As before, let **C̄'<sub>n,K</sub>** be **C<sub>n,K</sub>** with an arbitrary cubie removed.

What is your **K-mino** with which you will tile, and how many cubies does it have? (So a 2-mino is our Lmino.) PROVE: **Every C̄'<sub>n,K</sub> admits a K-mino-tiling**.

**A3:** For  $K = 0, 1, 2, \dots$ , define sum

$$\mathcal{S}_K := \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots + \frac{1}{K \cdot [K+1]} \\ \stackrel{\text{note}}{=} \sum_{n=1}^K \frac{1}{n \cdot [n+1]}.$$

Find a closed-form [no summation sign, nor dot-dot-dot] for  $\mathcal{S}_K$ . Prove your formula correct by induction on  $K$ .

**A1:**  90pts**A2:**  130pts**A3:**  75pts**Total:**  295pts

**HONOR CODE:** “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” **Name/Signature/Ord**

Ord:

Ord:

Ord: