

Sets and Logic
MHF3202 12A3

Home-A

Prof. JLF King
12Oct2021

Due **BoC, Wednesday, 20Oct2021**, wATMP!
Write **DNE** if the object does not exist or the operation cannot be performed. NB: $\mathbf{DNE} \neq \{\} \neq 0$.

A1: Show no work.

a 10 20 The **Threeish-numbers** comprise $\mathcal{T} := 1 + 3\mathbb{N}$.
 \mathcal{T} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is **\mathcal{T} -irreducible**: $\mathcal{T} \subsetneq F$

Threeish $N := 85$ is **not \mathcal{T} -prime** because \mathcal{T} -numbers $J := \dots$ and $K := \dots$ satisfy $J \bullet [J \cdot K]$, yet $N \nmid J$ and $N \nmid K$.

Also, \mathcal{T} -GCD(175, 70) = \dots .

b 20 On $\Omega := [1..29] \times [1..29]$, define binary-relation **C** by:
 $(x, \alpha) \mathbf{C} (y, \beta) \iff x \cdot \beta \equiv_{30} y \cdot \alpha$. Statement
“Relation **C** is an equivalence relation” is: $\mathcal{T} \subsetneq F$

Carefully TYPE your essays, double-spaced. I suggest LATEX, but other systems are ok too.

A2: Let \mathbf{E}_n be the equilateral triangle with side-length 2^n . This \mathbf{E}_n can be tiled in an obvious way by 4^n many little-triangles [copies of \mathbf{E}_0]; see picture on blackboard. The “**punctured \mathbf{E}_n** ”, written $\widetilde{\mathbf{E}}_n$, has its topmost copy of \mathbf{E}_0 removed.

A (**trape**)**zoid**, **T**, comprises three copies of \mathbf{E}_0 glued together in a row, rightside-up, upside-down, rightside-up. [A **zoid-tiling** allows all three rotations of **T**.]

i PROVE: For each n , board $\widetilde{\mathbf{E}}_n$ admits a zoid-tiling.

ii Let Δ_k be the equilateral triangle of sidelength k ; so \mathbf{E}_n is Δ_{2^n} . Triangle Δ_k comprises k^2 little-triangles.

For what values of k does Δ_k admit a zoid-tiling?

For which k does $\widetilde{\Delta}_k$ admit a zoid-tiling?

iii An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed).

Let \mathbf{S}_n be the $2^n \times 2^n$ square board, comprising 4^n **squares** (little squares). Have $\widetilde{\mathbf{S}}_n$ be the board with one corner square removed. Shown in class is an inductive proof that each $\widetilde{\mathbf{S}}_n$ is Lmino-tilable (by $[4^n - 1]/3$ Lminos, of course). Further, with \mathbf{S}'_n denoting \mathbf{S}_n with an *arbitrary* puncture, we proved that every \mathbf{S}'_n is Lmino-tilable.

Generalize this to three-dimensions. Let \mathbf{C}_n denote the $2^n \times 2^n \times 2^n$ cube, $\widetilde{\mathbf{C}}_n$ the corner-punctured cube, and let \mathbf{C}'_n be \mathbf{C}_n but with an arbitrary **cubie** removed.

What is the 3-dimensional analog of an Lmino? Calling it a “**3-mino**”, how many cubies does it have? [Provide a drawing of your 3-mino.] PROVE: **Every \mathbf{C}'_n admits a 3-mino-tiling.** [Provide also pictures showing your ideas.]

iv Generalize to K -dim(ensional) space, with $\mathbf{C}_{n,K}$ being the $2^n \times K \times 2^n$ cube, having $[2^n]^K = 2^{nK}$ many K -dim’al cubies. As before, let $\mathbf{C}'_{n,K}$ be $\mathbf{C}_{n,K}$ with an arbitrary cubie removed.

What is your **K -mino** with which you will tile, and how many cubies does it have? (So a 2-mino is our Lmino.) PROVE: **Every $\mathbf{C}'_{n,K}$ admits a K -mino-tiling.**

A3: Recall **Rabbits and Lights** from the zoomester’s beginning: To your right are lights $\mathcal{L}_1, \mathcal{L}_2, \mathcal{L}_3, \dots$. Each light has a toggle button; Press&release: the light illuminates; P&R again, it is extinguished.

Off to your left is a queue of rabbits; so we have

$\dots \mathcal{R}_3 \mathcal{R}_2 \mathcal{R}_1 \mathcal{L}_1 \mathcal{L}_2 \mathcal{L}_3 \mathcal{L}_4, \dots$

All the lights are initially off. If rabbit- α (i.e., \mathcal{R}_α) jumps, then he will hop on lights $\mathcal{L}_\alpha, \mathcal{L}_{2\alpha}, \mathcal{L}_{3\alpha}, \dots$, turning them all on. If rabbit- β now jumps, he will change the state of lights $\mathcal{L}_\beta, \mathcal{L}_{2\beta}, \mathcal{L}_{3\beta}, \dots$, turning some on, and some off.

A Map f. A (finite or infinite) set $\mathbf{R} = \{\alpha_1, \alpha_2, \dots\}$ of rabbit-indices is an element of powerset $\mathbf{P} := \mathcal{P}(\mathbb{Z}_+)$. After those rabbits jump, we have a (finite or infinite) set $\mathbf{L} = \{\beta_1, \beta_2, \beta_3, \dots\}$ of indices of illuminated lights. Define $f: \mathbf{P} \rightarrow \mathbf{P}$ by $f(\mathbf{R}) := \mathbf{L}$.

Our first-day class showed [involution argument, and re-argued using the divisor-count τ -func] that $f(\mathbb{Z}_+)$ is the set $\{1, 4, 9, \dots\}$ of squares. Evidently $f(\emptyset) = \emptyset$ and $f(\{1, 2\}) = \text{Odds}$. \square

Q1 For each of the following questions, produce either a **CEx** [counterexample] or a **formal proof**.

Is f injective? Is f surjective?

Q2 For $L \in \text{Range}(f)$, give an algorithm to produce an R for which $f(R) = L$. If you program, can you implement your algorithm in computer code?

Q3 Produce a commutative, associative binop $\$: \mathcal{P} \times \mathcal{P} \rightarrow \mathcal{P}$ which satisfies

$$\forall R, R' : f(R \$ R') = f(R) \$ f(R').$$

What can you tell me about this binary operator?

Q4 What is the f -fixed-point set; those R with $f(R) = R$?

What can you say about the dynamics of f ? —does it have periodic points of order 2? 3? ...?

What is $f(f(\mathbb{Z}_+)) \stackrel{\text{note}}{=} f(\text{Squares})$? (Conjecture? Computer simulation?)

Q5 Creativity: Come up with an *interesting* generalization of this problem. E.g:

- What if each light has *three* states; *off*, *dim*, *bright*?
- What if we have a plane, or quarter-plane of lights, and interesting rule for rabbits jumping on it?

Can you give a (partial) solution, or a computer simulation, or a conjecture, for your new problem(s)?

A1: _____ 50pts

A2: _____ 125pts

A3: _____ 130pts

Total: _____ 305pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

_____._____ Ord:

_____._____ Ord:

_____._____ Ord: