

Sets and Logic
MHF3202 3E07

Home-A

Prof. JLF King
Wednesday 05Feb2020

Due **BoC, Monday, 10Feb2020**, wATMP!

Please *fill-in* every *blank* on this sheet. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

A1: *Show no work. Simply fill-in each blank on the problem-sheet.*

a Given sets with cardinalities $|B| = 8$ and $|E| = 5$, the number of non-constant fncs in B^E is _____.

b Using *only* symbols **H, D, \wedge , \vee , \neg , T, F,], [**, rewrite (in simplest form) expression $[[H \Rightarrow D] \Rightarrow H]$ as _____ Ditto, rewrite $[H \Rightarrow [D \Rightarrow H]]$ as _____.

c $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. $T \quad F$
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. $T \quad F$
For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. $T \quad F$

d In $[5x^2 + 4y + z^3 + 7]^{20}$, compute these coeffs:
 $\text{Coeff}(x^6 z^8) =$ _____
 $\text{Coeff}(y^5 z^6) =$ _____

[You may write answers as a product numbers, powers and multinomial-coeffs.]

e The number of ways of picking 42 objects from 70 types is $\binom{70}{42} \frac{\text{Binom}}{\text{coeff}} \left(\dots \right)$. And $\binom{70}{42} = \binom{T}{N}$, where $T = \dots \neq 70$, and $N = \dots$

For the two essay questions, carefully TYPE, double spaced, grammatical solns. I suggest LATEX, but other systems are ok too.

A2: Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$\ddagger: \quad b_{n+2} := 7b_{n+1} - 10b_n, \quad \text{for } n = 0, 1, \dots$

Use induction to prove, for each natnum k , that

$\ddagger: \quad b_k = 5^k - 2^k$.

Further: Given recurrence (\dagger) and initial conditions, *explain* how you could have discovered/computed the numbers 5 and 2 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger) -like formula when the recurrence is $b_{n+2} := Sb_{n+1} - Pb_n$, for arbitrary real-number coefficients **S** and **P**?

A3: Let **E**_n be the equilateral triangle with side-length 2^n . This **E**_n can be tiled in an obvious way by 4^n many little-triangles [copies of **E**₀]; see picture on blackboard. The “**punctured E**_n”, written $\widetilde{\mathbf{E}_n}$, has its topmost copy of **E**₀ removed.

A (**trapezoid**) **zoid**, **T**, comprises three copies of **E**₀ glued together in a row, rightside-up, upside-down, rightside-up. [A **zoid-tiling** allows all three rotations of **T**.]

i PROVE: *For each n , board $\widetilde{\mathbf{E}_n}$ admits a zoid-tiling.*

ii Let Δ_k be the equilateral triangle of sidelength k ; so **E**_n is Δ_{2^n} . Triangle Δ_k comprises k^2 little-triangles. For what values of k does Δ_k admit a zoid-tiling? For which k does $\widetilde{\Delta_k}$ admit a zoid-tiling?

iii An **Lmino** (pron. “ell-mino”) comprises three squares in an “L” shape (all four orientations are allowed).

Let **S**_n be the $2^n \times 2^n$ square board, comprising 4^n **squares** (little squares). Have $\widetilde{\mathbf{S}_n}$ be the board with one corner square removed. Shown in class is an inductive proof that each $\widetilde{\mathbf{S}_n}$ is Lmino-tilable (by $[4^n - 1]/3$ Lminos, of course). Further, with **S**_n' denoting **S**_n with an *arbitrary* puncture, V. proves that every **S**_n' is Lmino-tilable.

Generalize this to three-dimensions. Let **C**_n denote the $2^n \times 2^n \times 2^n$ cube, **C**_n the corner-punctured cube, and let **C**_n' be **C**_n but with an arbitrary **cubie** removed.

What is the 3-dimensional analog of an Lmino? Calling it a “**3-mino**”, how many cubies does it have? [Provide a drawing of your 3-mino.] PROVE: *Every **C**_n' admits a 3-mino-tiling.* [Provide also pictures showing your ideas.]

iv Generalize to K -dim(ensional) space, with **C**_{n,K} being the $2^n \times \dots \times 2^n$ cube, having $[2^n]^K = 2^{nK}$ many K -dim'el cubies. As before, let **C**_{n,K}' be **C**_{n,K} with an arbitrary cubie removed.

What is your **K-mino** with which you will tile, and how many cubies does it have? (So a 2-mino is our Lmino.) PROVE: *Every **C**_{n,K}' admits a K-mino-tiling.*

A1: _____ 135pts

A2: _____ 60pts

A3: _____ 130pts

Total: _____ 325pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....