

Number Theory
MAS4203 8430

Home-A

Prof. JLF King
Touch: 2Jul2018

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by **3PM, Thursday, 08Feb2007**, slid
completely under my office door, Little Hall 402.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

A1: Show no work.

a So $z = \underline{\dots}$ is the smallest natnum satisfying

$$z \equiv_7 -2, \quad z \equiv_8 -1, \quad z \equiv_{11} 5, \quad z \equiv_{15} 12.$$

b And $y = \underline{\dots}$ is the smallest natnum with

$$y \equiv_{20} 1, \quad y \equiv_{15} 11, \quad y \equiv_{12} 5.$$

c Let $G := \text{Gcd}(70, 42, 30)$; so $G = \underline{\dots}$.

Use the LBolt Alg twice to find three integers with
 $\cdot 70 + \underline{\dots} \cdot 42 + \underline{\dots} \cdot 30 = G$.

d+ [Changed!] As polynomials in $\mathbb{Z}_7[x]$, let

$$\begin{aligned} B(x) &:= x^4 - 2x^3 + x - 2; \\ C(x) &:= x^3 + 3x^2 - 3x. \end{aligned}$$

Write t.fol polys, using coeffs in $[-3..3]$. Compute quotient and remainder polynomials,

$q(x) = \underline{\dots}$ & $r(x) = \underline{\dots}$,
with $\underline{\dots} = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

e+ With B, C from above, polys in $\mathbb{Z}_7[x]$: Let D be $\text{Gcd}(B, C)$.
Write these three polys using coeffs in $[-3..3]$: The monic
 $D(x) = \underline{\dots}$.

Compute polys $S(x) = \underline{\dots}$,

$T(x) = \underline{\dots}$ st. $[S \cdot B] + [T \cdot C] = \underline{\dots} D$.

f $\varphi(121000) = \underline{\dots}$.

Express your answer a product $p_1^{e_1} \cdot p_2^{e_2} \cdots$ of primes to posint powers, with $p_1 < p_2 < \dots$.

g Easily, $\varphi(25) = \underline{\dots}$. Consequently,

$27^{2006} \equiv_{25} \underline{\dots} \in [0..25)$. [Hint: Fermat, Euler, working mod 25.]

Essay questions: Type in complete sentences and also fill-in the blanks. Each essay starts a new page.

A2: Show the orbit $n \mapsto \langle 7^{2^n} \rangle_{77}$, for $n \in [0..10]$. In binary, 707 is $\underline{\dots \dots \dots \dots}$. So $k = \underline{\dots \dots \dots \dots} \in [0..77]$, where $k \equiv_{77} 7^{707}$; briefly show how computed.

A3: **i** Prove that $\text{Min} \text{d}_0$ ("distributes over") Max . (Do not bother to prove that $\text{Max} \text{d}_0 \text{Min}$; you may use that for free in part (ii).)

ii Acting on \mathbb{Z}_+ , prove that $\text{Gcd} \text{d}_0 \text{Lcm}$. One approach is part (i) combined with FTArithmetic.

A4: Use Wilson's Thm to prove #43a^P63 of Strayer. Thus $2 \cdot [99!] \equiv_{103} \underline{\dots} \in (-50..51]$.

A1: 150pts

A2: 65pts

A3: 65pts

A4: 65pts

Total: 345pts

HONOR CODE: "I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord

Ord:

Ord:

Ord: