

NT
MAS4203 4D70

Home-A

Prof. JLF King
Fri, 13Jul2018

Due: BoC, Tuesday, 17 July 2018. Fill-in every *blank* on this sheet. This is the *first-page* of your write-up, with your essays securely stapled to it.

A1: Show no work. Write DNE in a blank if the described object does not exist or if the indicated operation cannot be performed.

• $N := \varphi(100) = \dots$. So $\varphi(N) = \dots$.
 EFT says that $3^{1621} \equiv_N \dots \in [0..N]$. Hence (by EFT) last two digits of $7^{[3^{1621}]} = \dots$ are \dots .

Suppose $y \perp N$, where $N \in \mathbb{Z}_+$. You compute Bézout multis U and V st. $yU + NV = 1$. Then “ U is a mod- N square” is:

C With $A := 29$, $B := 20$, $U := A \cdot B = 580$, let \mathbf{J} be $(-290 \dots 290]$. There is a ring-iso $g: \mathbb{Z}_A \times \mathbb{Z}_B \rightarrow \mathbb{Z}_U$ sending (α, β) to $\langle G\alpha + H\beta \rangle_{\mathbb{Z}_U}$, using magic numbers

$G = \dots \in \mathbf{J}$ and $H = \dots \in \mathbf{J}$. A mod- U root of poly $f(x) := 20 \cdot [x+10]^3 + 29 \cdot [x-2]$ is $(\dots, \dots) \xrightarrow{g} \dots \in \mathbf{J}$.

OYOP: Your 2 essay(s) must be TYPED, and Double spaced. Use the Print/Revise cycle to produce good, well thought out, essays. Start each essay on a new sheet. Do not restate the problem; just solve it.

A2: For primes $\alpha < \beta$, their product $P := \alpha\beta$ has

$$\varphi(P) = 37520101020 \quad \text{and} \quad \sigma(P) = 37521045408.$$

Describe an efficient algorithm [not brute-search] to compute $\alpha = \dots < \beta = \dots$.

With \mathcal{E} and \mathcal{D} denoting the number of bits in $\varphi(P)$ and $\sigma(P)$, respectively, estimate the Running-Time of this algorithm, as function of ordered-pair $(\mathcal{E}, \mathcal{D})$, or of just \mathcal{D} .

A3: The *Blip-numbers* comprise $\mathcal{B} := 1 + 3\mathbb{N}$. In terms of factorization $T = p_1^{E_1} \cdots p_K^{E_K}$ [where $p_1 < \dots < p_K$ are \mathbb{Z} -primes, and each E_j is a posint]:

- i Give/prove an IFF-characterization for when $T \in \mathcal{B}$.
- ii Give/prove an IFF-char. of when T is Blip-irreducible.
- iii Give/prove an IFF-char. of when T is Blip-prime.
- iv Using theorems from our text, prove or disprove:
"There are ∞ many Blip-primes."

End of Home-A

A1: _____ 85pts
A2: _____ 90pts
A3: _____ 90pts

Total: 265pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)."* *Name/Signature/Ord*

Ord:

Ord:

Ord: