

Staple!

Moda
MAA4226 MAA5228

Home-A

Prof. JLF King
Touch: 6May2016

Hello. Our take-home is due at the **BoC, Monday, 11 Oct. 2010.** Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

A1: Show no work. Fill-in *all* blanks on *this* sheet! (*Handwriting is fine; don't bother to type*).

a Let $S := \{q \in \mathbb{Q}_+ \mid 5 \leq q^2 < 9\}$. Then:

$$\text{Cl}_{\mathbb{R}}(S) = \text{.....} \quad \text{Itr}_{\mathbb{R}}(S) = \text{.....}$$

$$\text{Cl}_{\mathbb{Q}}(S) = \text{.....} \quad \text{Itr}_{\mathbb{Q}}(S) = \text{.....}$$

b₁₄ Let $S := \{q \in \mathbb{Q}_+ \mid 5 \leq q^2 < 9\}$. Then:

$$\partial_{\mathbb{R}}(S) = \text{.....} \quad \partial_{\mathbb{Q}}(S) = \text{.....}$$

c₂₄ Suppose that U, V_1, V_2, \dots are \mathbb{R} -open-sets, and E, K_1, K_2, \dots are \mathbb{R} -closed-sets. Circle those of the following sets which are guaranteed to be \mathbb{R} -closed.

$$K_1 \setminus E. \quad \partial_{\mathbb{R}}(E) \cap \text{Itr}_{\mathbb{R}}(E). \quad \partial_{\mathbb{R}}(E) \cup \text{Itr}_{\mathbb{R}}(E).$$

$$\mathbb{R} \setminus \left[\bigcup_{n=1}^{\infty} V_n \right]. \quad \bigcup_{n=1}^{\infty} \text{Cl}_{\mathbb{R}}(V_n). \quad [\text{Itr}_{\mathbb{R}}(E) \cap V_1]^c.$$

d₁₀ Give an example of a set,

$$\left\{ \text{.....} \in \mathbb{R} \mid \text{.....} \right\},$$

which has $5, 8, 9 \in \mathbb{R}$ as its only \mathbb{R} -cluster points.

e Define $\Omega := \text{.....} \subset \mathbb{R}$ st. the Ω -closed ball $C := \Omega\text{-CldBal}_5(0) = \text{.....}$ satisfies $C \supsetneq \text{Itr}_{\Omega}(C) = \text{.....} \supsetneq \Omega\text{-Bal}_5(0) = \text{.....}$

Essay questions: For each question, carefully type a **triple-spaced** essay solving the problem.

Each essay starts a **new page**.

A2: For a subset S of MS (X, \mathfrak{m}) , let S' comprise the X -cluster-pts of S . For the three parts below, **Illustrate** your various sets with **useful, colored pictures!**

i i **Prove:** THEOREM: Always, S' is X -closed.

ii ii Give an example [with proof, natch'] of a set $S \subset \mathbb{R}$ ($\mathfrak{m} :=$ usual metric) so that $S' \not\subset S$ and $S' \not\supset S$.

iii iii For $N \in \mathbb{N}$, say an $S \subset \mathbb{R}$ is **N -good** if

$$S \supsetneq S' \supsetneq S'' \supsetneq \dots \supsetneq S^{(N)} = S^{(N+1)}.$$

In \mathbb{R} , give examples of a 1-good set A , a 2-good set B , and a 3-good set C . Then: For each natnum N construct, with proof, an N -good set $D_N \subset \mathbb{R}$.

A3: A MS (Y, \mathfrak{d}) is **sequentially compact** if each $\vec{b} \subset Y$ has a subsequence $\vec{a} \subset \vec{b}$ which is Y -convergent. Prove that Y is sequentially-cpt (seq-cpt) IFF each infinite subset $E \subset Y$ has a cluster-point in Y .

End of Home-A

A1: _____ 88pts

A2: _____ 85pts

A3: _____ 85pts

Poorly stapled, or missing ordinals : _____ -5pts

Missing names, or honor sigs : _____ -5pts

Total: _____ 258pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)."* Name/Signature/Ord

Ord: _____

Ord: _____

Ord: _____