

Staple!

DynSys
MTG 6401

Home-A

Prof. JLF King
Touch: 6May2016

Hello. Take-home is due by **3PM, Thursday, 15Oct2009**, slid completely under my office door, LIT402.

Here, we only consider bi-mpts on a probability space, e.g. $(T : X, \mathcal{X}, \mu)$ or $(S : Y, \mathcal{Y}, \nu)$. All mentioned subsets of a measure-space are assumed measurable.

A1: Please prove this result.

1: First Cesàro Lemma. Suppose that $\vec{\mathbf{b}} := (b_n)_{n=1}^\infty$ is a decreasing (non-increasing) sequence of real numbers. Then the following limit exists in $[-\infty, \infty)$ and this equality holds:

$$* : \lim_{N \rightarrow \infty} \frac{1}{N} \sum_{k=1}^N b_k = \inf_n b_n.$$

I.e. $\mathbb{A}_\infty^k(b_k) = \inf_n b_n$. ◊

Aside: You may use either $\mathbb{A}_\infty^k(b_k)$ or $\mathbb{A}_\infty(\vec{\mathbf{b}})$ to abbrev. LhS(*)).

A2: Fix $B > 0$. For $z \in X$, define

$$\mathcal{R} = \mathcal{R}_B := \{n \in \mathbb{Z} \mid \mu(B \cap T^{-n}B) > 0\};$$

$$\rho(z) = \rho_B(z) := \{n \in \mathbb{Z} \mid T^n z \in B\}.$$

a Prove that \mathcal{R} has **bounded gaps**. (The general term is “syndetic”. In an abelian topological group G , a subset $\mathcal{R} \subset G$ is **syndetic** if there exists a compact $K \subset G$ st. $\mathcal{R} + K$ (the set of all sums) is the whole group.)

b The Birkhoff thm implies that a.e $z \in X$ hits B with a limiting frequency. ♡1 Now assume that T is ergodic. Thus for a.e z : $\text{Den}(\rho(z))$ equals $\mu(B)$.

Construct an ergodic T and set $B > 0$ st. for a.e z in X : The set $\rho(z)$ does not have bounded gaps.

♡1A frequency that depends on z , or rather, on the ergodic component that z lies in.

Team: _____

A3: Let S be the shift on $Y := \{0, 1\}^{\mathbb{Z}}$, equipped with independent $(\frac{1}{2}, \frac{1}{2})$ -measure. (I.e, S is the **Bernoulli 2-shift**.)

i Construct an $f \in \mathbb{L}^\infty(\nu)$ st.

$$\int_Y f = 0 \quad \text{and} \quad \int_Y |f| > 0,$$

for which the Mean Ergodic Thm conclusion *fails* in the \mathbb{L}^∞ -norm.

ii Can you construct a rank-1 trn T and \mathbb{L}^∞ -fnc f for where the same failure occurs?

[Hint: For both parts, LARGE, colorful, pictures may be of use.]

End of Home-A

A1:	_____	95pts
A2:	_____	95pts
A3:	_____	95pts

Total: _____ 285pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).* _____ *Name/Signature/Ord*

_____ *Ord:* _____

_____ *Ord:* _____

_____ *Ord:* _____