

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by BoC, Monday, 23Sep2019 with **ATP!** Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq$ *Empty-word*.

Let **F** and **R** be the *flip* and *rotation* in the dihedral group \mathbb{D}_N , with $\mathbf{F}^2 = \mathbf{e}$, $\mathbf{R}^N = \mathbf{e}$ and $\mathbf{R}\mathbf{F}\mathbf{R} = \mathbf{e}$. Use \mathbf{R}^j and $\mathbf{R}^j\mathbf{F}$ as the standard form of each element in \mathbb{D}_N .

Use \mathbb{Z}_N to denote the cyclic group of order N .

Fill-in *all* blanks (*handwriting; don't bother to type*) on this sheet including the blanks for the essay questions!

A1: Show no work.

a Mod $K := 4301$, the recipr. $\langle \frac{1}{237} \rangle_K = \boxed{\dots} \in [0..K]$.
[Hint: $\frac{1}{237} = \frac{1}{237} \cdot 1$]

b $G := (\mathbf{U}(23), \cdot, 1)$ is cyclic. The smallest generator is $\boxed{\dots} \in [2..21]$. And G has $\boxed{\dots}$ many generators.

c In \mathbb{S}_4 , the centralizer of $\mathbf{q} := (1\ 2)(3\ 4)$ has $\boxed{\dots}$ many elts. In $C(\mathbf{q})$, the number of elements of each cycle-signature is: $\lceil 1^4 \rceil: \boxed{\dots}$, $\lceil 1^2, 2^1 \rceil: \boxed{\dots}$, $\lceil 1^1, 3^1 \rceil: \boxed{\dots}$, $\lceil 2^2 \rceil: \boxed{\dots}$, $\lceil 4^1 \rceil: \boxed{\dots}$.

d In \mathbb{S}_4 , the subgp, H , generated by $y := (1\ 2)(3\ 4)$ and $z := (2\ 4\ 3)$ has $\boxed{\dots}$ many elements.

e Elt $\alpha^3 = (6\ 4\ 1\ 0\ 3\ 5\ 2) \in \mathbb{S}_7$. So $\alpha = \boxed{\dots}$

f Perm $\beta \in \mathbb{S}_{15}$ has sig $\lceil 5^3 \rceil$. It has $\boxed{\dots}$ many sqroots with sig $\lceil 5^3 \rceil$, and $\boxed{\dots}$ with sig $\lceil 10^1, 5^1 \rceil$.

g Circle the one group which is *not* isomorphic to any of the others:

$\mathbb{Z}_2 \times \mathbb{Z}_6$ \mathbb{D}_6 $\mathbf{U}(13)$ $\mathbb{Z}_4 \times \mathbb{Z}_3$ $\mathbb{S}_3 \times \mathbb{Z}_2$.

The remaining four groups can be paired into two isomorphic pairs. Underline the cyclic pair.

h In \mathbb{S}_{11} , the maximum possible order of an element is $\text{MaxOrd}(\mathbb{S}_{11}) = \text{LCM}(\dots) = \boxed{\dots}$.

For the essay questions, carefully TYPE, double-spaced, grammatical solns. I suggest LATEX, but other systems are ok too.

Fill-in all blanks. Each essay starts a new page.

A2: Produce (with proof, natch') a finite group G and explicit elts $\mathbf{x}, \mathbf{y} \in G$ with *different prime* orders $p \neq q$, so that $\text{Ord}(\mathbf{xy}) \perp p \cdot q$. [Hint: Necessarily, $\mathbf{x} \neq \mathbf{y}$.]

A3: Group \mathbb{D}_5 has $\boxed{\dots}$ many automorphisms of which $\boxed{\dots}$ are inner-auts. Exhibit an *outer*-aut, defined by $\alpha(\mathbf{R}) := \boxed{\dots}$ and $\alpha(\mathbf{F}) := \boxed{\dots}$. [Use form $\mathbf{R}^j \mathbf{F}^k$.] Prove that your defn extends to an automorphism. Prove that your α is not an inner-automorphism.

A4: Prove or disprove: Multiplicative groups $G := \mathbf{U}(20)$ and $H := \mathbf{U}(24)$ are isomorphic.

End of Home-A

A1:	<u> </u>	150pts
A2:	<u> </u>	35pts
A3:	<u> </u>	75pts
A4:	<u> </u>	35pts

Total: 295pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord:

Ord:

Ord: