

Staple!

Algebra 1
MAS4301 3175

Home-A

Prof. JLF King
Monday 03Feb2003

Hello. The order of your hand-in should be: PROBLEM SHEET (P-S, this side up), TYPESETTING CONVENTIONS (if any), followed by the write-up to each question.

General instructions are on the CHECKLIST. *Each member* of the team must retain a *complete copy* of the team's essays, **including diagrams**.

Use “ $f(x)$ notation” when writing fncs; in partic., for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than $\sin x$ or $[\sin x]$. Be sure to write unambiguously, e.g, “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$.

A1: Please write a proof for #51Page85. [Hint: If α, β are involutions, is $\alpha\beta\alpha$ an involution? Could $\alpha\beta\alpha$ be ε ?] (Jog: There is no gp with exactly two order-2 elements.)

A2: Please write a proof for #13Page90. (Jog: When is the set of N^{th} powers a gp?)

A3: Prove #32Page91. Pictures will help. (Jog: A cyclic gp with exactly one non-trivial proper subgp looks like what?)

A4: For each $x \in \mathbb{R}$, we have a vertical and a horizontal shear (viewed as acting on column-vectors):

$$H_x := \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \quad \text{and} \quad V_x := \begin{bmatrix} 1 & 0 \\ x & 1 \end{bmatrix}.$$

Let **shear** hence mean either an H_x or a V_x .

Prove that the shears generate all of $\text{SL}_2 \mathbb{R}$. What is a det=1 matrix M requiring the largest number of shears, when written as a shear-product? –and how many shears does it need?

A5: (Altered) On the 4×4 TTT (TicTacToe) board, let G denote the TTT-automorphism group. This is the set of self-bijections of $[1..4] \times [1..4]$ which preserve all TTTs. A particular TTT-auto is the **swizzle**, S : It exchanges each corner square with the central square that it (diagonally) touches; and it does The Right Thing (tm) on the edge squares.

a Find a TTT-auto T which is **not** in the subgp $\langle \text{Isometries}, S \rangle$, yet $\langle \text{Isometries}, S, T \rangle$ is all of G .

b Compute the order of G . Find a set of *involutions* which generates G . What is a *minimum cardinality* generating set for G ?

Compute the center of G ; what is its order?

Team: _____

c For $K = 1, 2, \dots$, let G_K denote the TTT-automorphism gp of the $K \times K$ board. Writing K as $K = 2H$ or $K = 2H + 1$, as K is even or odd, compute the order of G_K in terms of H . How many *really different* (i.e, non-isomorphic) first moves are there?

What is the smallest generating set that you can find for G_K ?

d On the $4 \times 4 \times 4$ TicTacToe board (Qubic), what is a 3-dim' al analog of The Swizzle? How many *really different* first moves are there? (ExtraCredit: Give a generating set for the gp TTT-autos, G_{Qubic} .)

A1:	_____	50pts
A2:	_____	30pts
A3:	_____	60pts
A4:	_____	95pts
A5:	_____	135pts

Total: _____ 370pts

HONOR CODE: *I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague). Name/Signature/Ord*

Ord: _____

Ord: _____

Ord: _____

Ord: