

Hello. Take-home A is due (at the beginning of class) on **Friday, 29 Sept; 1995.**

A1:

[a] $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} = \dots \quad \log_3(9^4) = \dots$

[b] For $x > 0$, let $B(x) := x^{\log(x)}$. Its derivative is
 $B'(x) = \dots$

[c] Let $y = f(x) := [[x \cdot \sqrt[3]{x}] - 2]/4$. Its inverse-function is $f^{-1}(y) = \dots$

[d] Let $g(x) := x^3 + x$. Then $g^{-1}(10) = \dots$

and $[g^{-1}]'(10) = \dots$

[e] Let $y = h(x) := \int_5^x \frac{1}{t} dt$. Then $h^{-1}(y) = \dots$

[f] Define fncs $E, G: [1..12] \rightarrow [1..12]$ where $E(n)$ is the number of letters in English name of n [so $E(9) = 4$, since “nine” has 4 letters] and $G(k)$ counts the #letters in the k^{th} Gregorian month. So $G(2) = 8$, since the 2nd month is “February”; 8 letters. Now: $E(E(11)) = \dots$

Statement “ $E \circ G = G \circ E$ ” is **T** **F**

A2: Define binary operation “ \heartsuit ”, on pair of reals, by $x \heartsuit y := xy + y$. Prove or disprove (i.e give an explicit counterexample): “ \heartsuit ” is associative.

On the set of positive real numbers, define “ \star ”, a binary operation, by $a \star b := a^{\log(b)}$. Prove or disprove: “ \star ” is associative.

A3: Please write up a solution to #64P427 of our text. Draw a careful picture of the situation.

A4: We explore the exponentiation operation. All the numbers in the questions below are *positive*.

[i] Put the correct relation, “ $<$ ”, “ $=$ ”, “ $>$ ” between the following two quantities: π^e and e^π .

Of course you can make a reasonable guess using a handheld approximator—but can you simply make a rigorous argument *without* a crutch, just using the properties of $\log()$ that you know together with the fact that $\pi > e$?

ii

Define these two numbers,

$$a := 2.\overbrace{000\dots005}^{1000 \text{ zeros}} \quad \text{and} \quad b := 2.\overbrace{000\dots006}^{1000 \text{ zeros}}.$$

Which number, a^b or b^a is larger, or are they equal? Carefully justify your answer.

iii

Here x and y denote positive numbers. For each x , how many positive reals y are so that

1:

$$x^y = y^x$$

is satisfied? Of course, $y := x$ is one such solution.

How many values (and what are they) of x satisfy that the *only* solution to eqn (??) is $y = x$?

End of Home-A

Filename: Classwork/2Calculus/2Calc1995t/a-hm.2Calc1995t.
latex

As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:06.