

Probability II
MAP6473 4810

Home-A

Prof. JLF King
Touch: 4Aug2016

Please. General instructions/notation are on the CHECKLIST and “Conditional probability & conditional measures”. Note: MG means Martingale, and ST means Stopping Time.

A1: Consider a MG \vec{Y} with pointwise bounds

$$1: \quad |Y_0| \leq 7 \quad \text{and} \quad \forall n: |Y_{n+1} - Y_n| \leq 7.$$

Suppose that β is a ST with $E(\beta) < \infty$.

Prove that Y_β is integrable and $E(Y_\beta) = E(Y_0)$.

A2: Consider an independent random-walk on the integers, where each step-probability depends on both position and time.

A **3-spread** $D()$ is a mean-zero random variable with support on $J := [-3 \dots +3]$. That is,

$$2: \quad \sum_{j \in J} P(D=j) = 1 \quad \text{and}$$

$$3: \quad E(D) \stackrel{\text{note}}{=} \sum_{j \in J} j \cdot P(D=j) = 0.$$

For each *time* $n \in \mathbb{Z}_+$ and each *position* $p \in \mathbb{Z}$, suppose that we have a 3-spread $D_{n,p}$, and all these random variables are mutually independent. Then our random-walk is \vec{S} , where $S_0 \equiv 0$ (we start at the origin) and

$$S_{n+1} := S_n + D_{n+1, S_n}.$$

Let $\tau()$ be the stopping time where the random-walk first hits position “5”. Use the preceding problem to prove that $E(\tau)$ must be infinite. [Hint: For a MG, be precise with your definition of \mathcal{G}_n .]

A3: Let $\vec{X} := (X_n)_{n=1}^\infty$ be a fair-coin process. Given a finite (but not necessarily bounded) stopping-time $\tau()$, we get a r.var X_τ and, more generally, a “random vector” $Y := (X_1, X_2, \dots, X_\tau)$.

Fix a particular number $z \in [0, 1]$; for specificity, consider $z := 1/\pi$. Cook up a τ so that, from Y , you can compute a *Yes!* or *No!*, so that the probability you say *Yes!* is exactly z . [Hint: Express z in binary as $z = \sum_{n=1}^\infty b_n/2^n$.]

a What is the expected running-time of your algorithm? –can you make it finite?

b

Now the coin is a $p + q = 1$ *biased-coin* and **you don't know the bias!** (You do know that $p, q > 0$.) Cook up an experiment, as above, which answers *Yes!* with prob= z . (Note that, since $\tau()$ is a.e-finite, you won't know what the bias of the coin was, even though you shouted an answer.)

In terms of p and q , what is the expected running-time of your algorithm?

A4: Suppose (\vec{S}, \vec{G}) is a subMG. Produce a MG \vec{Y} adapted to \vec{G} , and positive process \vec{P} so that

$$d1: S_n = Y_n + P_n \quad (\text{for } n = 0, 1, 2, \dots).$$

$$d2: 0 = P_0 \leq P_1 \leq P_2 \leq P_3 \leq \dots$$

$$d3: \text{Each } P_j \text{ is measurable w.r.t } \mathcal{G}_{j-1}.$$

[Hint: What does conditioning $S_n - S_{n-1}$ on \mathcal{G}_{n-1} say about \vec{P} ? Now try Astronomy...]

c Suppose that $S_n = \hat{Y}_n + \hat{P}_n$ is *another* decomposition fulfilling (d1,d2,d3). Prove that

$$\hat{Y}_n \stackrel{\text{a.e.}}{=} Y_n \quad \text{and} \quad \hat{P}_n \stackrel{\text{a.e.}}{=} P_n,$$

for all n . The decomposition is *unique*.

End of Home-A

A1: _____ 70pts

A2: _____ 70pts

A3: _____ 70pts

A4: _____ 70pts

Total: _____ 280pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague).” *Name/Signature/Ord*

Ord: *.....*

Ord: *.....*