

NT & ECC
MAT4930 5662

Home-A

Prof. JLF King
Touch: 2Jul2018

Hello. Essays violate the CHECKLIST at *Grade Peril!*
Exam is due by **8:28AM, Friday, 12Oct2007**,
handed-in, in class, with all team-mates present.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

A1: Show no work.

a So $z = \dots$ is the smallest natnum satisfying

$$z \equiv_{34} 1, \quad z \equiv_{27} 9, \quad z \equiv_{51} 18, \quad z \equiv_{30} -3.$$

b And $y = \dots$ is the smallest natnum with

$$y \equiv_9 0, \quad y \equiv_{15} 12, \quad y \equiv_{25} 7, \quad y \equiv_{21} 17.$$

c Let $A := -13 + i$, $B := 3 + 22i$, $C := 2 + 9i$. So $G := \text{Gcd}(A, B, C) = \dots$. (CForm; real & imag non-negative.) Use the LBolt Alg twice to find three Gaussian-integers for which G equals

$$\dots \cdot A + \dots \cdot B + \dots \cdot C = G.$$

d As polynomials in $\mathbb{Z}_7[x]$, let

$$\begin{aligned} B(x) &:= x^4 - 2x^3 + x - 2; \\ C(x) &:= x^3 + 3x^2 - 3x. \end{aligned}$$

Write t.fol polys, using coeffs in $[-3..3]$. Compute quotient and remainder polynomials, $q(x) = \dots$ & $r(x) = \dots$,

with $\bar{B} = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

e With B, C from above, polys in $\mathbb{Z}_7[x]$: Let D be $\text{Gcd}(B, C)$. Write these three polys using coeffs in $[-3..3]$: The **monic** $D(x) = \dots$.

Compute polys $S(x) = \dots$,

$T(x) = \dots$ st. $[S \cdot \bar{B}] + [T \cdot \bar{C}] = \bar{D}$.

f Easily, $\varphi(175) = \dots$. Consequently,

$17^{2007} \equiv_{175} \dots \in [0..175)$. [Hint: Fermat, Euler, working mod 175.]

Note $p := 137$ is prime. The (multiplicative) order of 7 mod 137 is \dots .

[Hint: $p - 1$ has very few prime factors.]

Essay questions: Type in complete sentences and also fill-in the blanks. Each essay starts a new page.

A2: Use Pollard- ρ to find a non-trivial factor of $M := 59749$, using seed $s_0 := 7$ and map $f(x) := 1+x^2$. Make a nice table, labeled

Time | Tortoise | Hare | $s_{2k} - s_k$ | $\text{Gcd}(??)$

— but replace the “??” with the correct expression. You found non-trivial factor $E := \dots$.

The hare Hits into the tortoise at time $H := \dots$.

Repeat, showing the table for $s_0 := 24$. Experiment with different seeds; what is the typical running time? How is it related to the factor you find?

A seed s determines a **tail**; the smallest natnum T for which there is a time $n > T$ with $f^n(s) = f^T(s)$. The smallest such n is $T+L$ where L is the **period**. Derive (picture+reasoning) a formula for the hitting time $H(T, L)$. [Hint: $H(0, L) = L$.]

Produce a Floyd-done-twice algorithm that computes both T and L . The number, N , of f -evaluations is upper-bounded by some small constant times $T+L$ (= arclength of ρ). How small can you get $N(T, L)$? [Hint: $N(0, L) = 3L$.]

A3: Let M be the matrix

$$\begin{bmatrix} 10 - 10i & -18 - 1i & -1 - 2i \\ -18 - 1i & 16 + 17i & -2 + 1i \\ 8 - 9i & -17 + 1i & 0 \end{bmatrix}.$$

Please put M in SNF, over the GIs, and compute the row and column bookkeeper matrices.

Give a GI-basis for the GI-nullspace of M .

Determine if $T := \begin{bmatrix} 84+13i \\ -64-88i \\ 77+4i \end{bmatrix}$ is in the GI-range of M . If so, derive a specific solution S for which $M \cdot S = T$. What is the general solution? Is there a not-all-zero \mathbb{Z} -solution? (Prove your claim.)

A1: _____ 280pts

A2: _____ 145pts

A3: _____ 215pts

Total: _____ 640pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my team-mates and my professor (or his colleague)." Name/Signature/Ord*

Ord:

.....

Ord:

.....

Ord:

.....