

For questions A1 and A2 please show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than .9797….

A1: Let $A := \begin{bmatrix} 2 & 3 & 4 \\ -1 & -1 & 1 \\ -2 & 0 & 1 \end{bmatrix}$, $B := \begin{bmatrix} \sqrt{2} & 0 & \sqrt{2} \\ 0 & -1 & 5 \end{bmatrix}$, and let $\mathbf{u} := \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix}$, $\mathbf{w} := \begin{bmatrix} 1 \\ \frac{1}{2} \\ -1 \end{bmatrix}$.

a So $AB = \dots$, $BA = \dots$.

b Circle those of the following vectors which are in $\text{Span}\{\mathbf{u}, \mathbf{w}\}$.

$$\mathbf{v}_1 := (2, 4, 6) \quad \mathbf{v}_2 := (2, 4, -6) \quad \mathbf{v}_3 := (0, 0, 0).$$

For the next two parts, let **AT** mean “Always True”, let **AF** mean “Always False”, let **Nei** mean “NEither always true nor always false”. Please **circle** the correct response. Below, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ represent *non-zero* vectors in \mathbb{R}^4 .

c If $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

If $\mathbf{w} \notin \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT AF Nei**

d $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}\}$ is all of \mathbb{R}^4 . **AT AF Nei**

If none of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is a multiple of the other vectors, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is lin. independent. **AT AF Nei**

a The inverse of $\begin{bmatrix} 1 & -6 & -7 \\ -3 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ is

f Give an example of two 2×2 matrices $A \neq B$ for which $A^2 = B^2$. $A = \dots$ and $B = \dots$.

g Suppose T is a linear map from \mathbb{R}^3 to \mathbb{R}^2 . Let $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 , and let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be the standard basis for \mathbb{R}^2 . Suppose that $T(\mathbf{e}_1) = \mathbf{v}_1 - 2\mathbf{v}_2$ and $T(\mathbf{e}_2) = 4\mathbf{v}_2$ and $T(\mathbf{e}_3) = 5\mathbf{v}_1 - 3\mathbf{v}_2$. Then the matrix of T is: \dots

h,i Consider these two matrices:

$$R := \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix} \quad \text{and} \quad A := \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}.$$

Determine the matrix $[RA]^{36} = \dots$.

[Hint: You don't need multiply matrices. Think of the linear transformations that these matrices represent.]

A2: Let \mathbf{v} be the unit vector in direction $\mathbf{e}_3 + \mathbf{e}_2$ (on the sphere, halfway between $\hat{\mathbf{k}}$ and $\hat{\mathbf{j}}$). Let R be the transformation which rotates CCW about \mathbf{v} by 90 degrees. Then $R(\mathbf{e}_1) = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ where

$$x = \dots, y = \dots, z = \dots.$$

A3: A system of 3 equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix $\begin{bmatrix} 1 & 6 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 8 & 0 \\ 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix}$. On your own paper, describe the *general solution* in this form

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. The *number of free variables* is \dots .

A1: 180pts

A2: 45pts

A3: 55pts

Total: 280pts

Please PRINT your **name** and **ordinal**. Ta:

Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: