

Exam date **27Oct1997**.

Abbreviations. MS, metric space. TS, topological space. For a TS Y , we use \overline{A} for the closure of A , and $A^c = X \setminus A$ for the complement of A .

A1: Here Y is a set.

A family $\mathcal{T} \subset \mathcal{P}(Y)$ is a **topology** on Y if...

Family $\mathcal{B} \subset \mathcal{P}(Y)$ is a “**base** of a topology” if...

In a TS X : That sequence $x_n \rightarrow z$ means that....

TS X is **sequentially-compact** if ...

A2: We have a MS (X, μ) . Prove or disprove: For each sequence D_1, D_2, \dots of subsets of X ,

$$\overline{\bigcup_1^\infty D_n} = \bigcup_1^\infty \overline{D_n}.$$

A3: Suppose $\{(X_\alpha, \mathcal{T}_\alpha) \mid \alpha \in A\}$ is a family of topological spaces. Let

$$\Omega := \prod_{\alpha \in A} X_\alpha,$$

equipped with the product topology.

a Describe the standard pre-base, \mathcal{P} , for this product topology.

b Consider points $g, f_1, f_2, \dots \in \Omega$. Prove that $f_n \rightarrow g$ (w.r.t the product topology, of course) IFF

For each α : $f_n(\alpha) \rightarrow g(\alpha)$, as $n \nearrow \infty$.

A4: Suppose $\{(X_k, d_k) \mid k = 1, 2, \dots\}$ are metric spaces, and let

$$\Omega := \prod_{k=1}^\infty X_k,$$

equipped with the product topology.

If each X_k is sequentially-compact, prove that Ω is sequentially-compact. [For the purposes of this problem, you may assume without proof that $f_n \rightarrow g$ in Ω IFF for each k , we have that $\lim_{n \rightarrow \infty} f_n(k) = g(k)$ in X_k .]

A5: Fix a set Y . A collection $\mathcal{C} \subset \mathcal{P}(Y)$ is a **cover** if $\bigcup(\mathcal{C}) = Y$. Say that \mathcal{C} is **locally finite**, if each $y \in Y$ is in only *finitely* many members of \mathcal{C} .

A cover \mathcal{M} is **minimal** if no member can be deleted: For each $A \in \mathcal{M}$, the remainder $\mathcal{M} \setminus \{A\}$ is *not* a cover.

a

Construct a cover \mathcal{E} of \mathbb{N} which has *no* minimal sub-cover.

b

In contrast, suppose that \mathcal{C} is a *locally finite* cover of Y . Use Zorn's Axiom to prove that \mathcal{C} has a *minimal* subcover \mathcal{M} .

A6: Prove that an infinite metric space (M, d) always has an open set U such that both U and $M \setminus U$ are infinite.

Bonus: In the bonus query, below, YMAWOProof the following fact. Suppose \mathcal{B} is a *base* for the topology on a space Ω . If each \mathcal{B} -cover of Ω has a finite subcover, then Ω is compact.

Bonus: Prove the following result.

1: Lemma. Suppose X and Y are compact topological spaces. Then $X \times Y$ is compact. \diamond

End of Class-A

A1: _____ 35pts

A2: _____ 30pts

A3: _____ 50pts

A4: _____ 50pts

A5: _____ 50pts

A6: _____ 50pts

Bonus: _____ 20pts

Total: _____ 265pts

Print name _____ Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:
