

A1: Short answer. Show no work.Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

5 5 **[a]** [With $\mathcal{P}()$ the powerset operator, let $S := \text{3-stooges.}$] Then $|\mathcal{P}(S)| = \text{.....}$ and $|\mathcal{P}(\mathcal{P}(S))| = \text{.....}$.

10 10 10 **[b]** $\forall x, z \in \mathbb{Z}$ with $x < z$, $\exists y \in \mathbb{Z}$ st.: $x < y < z$. $T \quad F$
 $\forall x, z \in \mathbb{Q}$ with $x \neq z$, $\exists y \in \mathbb{R}$ st.: $x < y < z$. $T \quad F$
For all sets Ω , there exists a fnc $f: \mathbb{R} \rightarrow \Omega$. $T \quad F$

25 **[c]** The coeff of $x^7 y^{12}$
in $[5x + y^3 + 1]^{30}$ is

[Write your answer as a product of powers and a multinomial. Optionally, you can expand the multinomial as a product of binomials.]

By the way, $\binom{30}{7, 4, 19} = \binom{30}{7} \cdot \binom{23}{4} \cdot 1$.

25 **[d]** Compute the real $\alpha = \text{.....}$ such that

$$* \quad 3^\alpha \cdot \sum_{k=0}^{4000} \binom{4000}{k} 2^k = \sum_{j=0}^{1995} \binom{1995}{j} 8^j.$$

[Hint: The Binomial Theorem]

30 **[e]** The physics lab has atomic *zinc, tin, silver and gold*. I'm allowed to take 6 atoms, so I have [expressed as single integer] many possibilities.

This number *also* equals the number-of-ways of picking K candies from L many types of candy, where $K = \text{.....} \notin \{1, 6\}$ and $L = \text{.....} \notin \{1, 4\}$.

10 10 **[f]** Complex number $[x + iy]^2 = -18i$, for real numbers

$x > y$, where $x = \text{.....}$ and $y = \text{.....}$.

End of Class-A

A1: 140pts

Total: 140pts