

Sets and Logic
MHF3202 09EH

Class-A

Prof. JLF King
Wedn., 12Feb2020**A4:** Short answer. Show no work.Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0$.

(+ 15) **a** Prof. King wears bifocals, and cannot read small handwriting. Circle one: **True!** **Yes!** **Who??**

(+ 20) **b** Write the truth-table for $B \Rightarrow [[\neg B] \Rightarrow C]$.

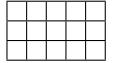
B	C	$\neg B$	$[\neg B] \Rightarrow C$	$B \Rightarrow [[\neg B] \Rightarrow C]$
T	T			
T	F			
F	T			
F	F			

(+ 5 15) **c** LBolt gives $G := \text{GCD}(23, 413) = \underline{\dots}$. And $23S + 413T = G$, where $S = \underline{\dots}$ & $T = \underline{\dots}$ are integers.

(+ 20) **d** The physics lab has atomic *zinc*, *tin*, *silver* and *gold*. I'm allowed to take 6 atoms, so I have [expressed as single integer] $\underline{\dots}$ many possibilities.

(+ 5 10 5) **e** The *Kiko-numbers* comprise $\mathcal{K} := 1 + 3\mathbb{N}$. \mathcal{K} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is \mathcal{K} -irreducible: $T \ F$
 $J := \underline{\dots}$ and $K := \underline{\dots}$ satisfy
 that $N \bullet [J \cdot K]$, yet $N \nmid J$ and $N \nmid K$.

Also, $\mathcal{K}\text{-GCD}(175, 70) = \underline{\dots}$.OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so I can easily write between the lines.

A5: An *Lmino* (pron. “ell-mino”) comprises three \blacksquare squares in an “L” shape (all four orientations are allowed). For natnum N , let \mathbf{R}_N denote the $3 \times N$ board: I.e.,  is the \mathbf{R}_5 board. Prove:

Theorem: When N is odd, then board \mathbf{R}_N is not Lmino-tilable.

You will likely want to first *state* and *prove* a Lemma. Now use appropriate induction on N to prove the thm. Also: *Illustrate your proof* with (probably several) large, *labeled* pictures.

A bit of EXTRA CREDIT: For $N=2H$ even, our \mathbf{R}_N has exactly

A6: Interval-of-integers $\mathbf{J} := [201 \dots 300)$ has 99 elements. A subset $S \subset \mathbf{J}$ is **Big** if $|S| = 51$. Subset $S \subset \mathbf{J}$ is **Perfect** if there exist *distinct* members $x, y \in S$ st. $x + y = 500$.

Prove that **Big \Rightarrow Perfect**. [Hint: PHP. *Carefully* specify what your pigeon-holes are.]

End of Class-A

A4: _____ 95pts**A5:** _____ 45pts**A6:** _____ 35pts**Total:** _____ 175pts

NAME: _____ Ord: _____

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____