

Staple!

Plex
MAA4402 2838

Class-A

Prof. JLF King
01Feb2017

Ord: _____

Notation. All sets are subsets of \mathbb{C} .
For sets B and E , the difference set is

$$B \setminus E := \{x \in B \mid x \notin E\}.$$

The complement of E is $E^c := \mathbb{C} \setminus E$.**A1:** Short answer. Show no work.Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.**a** Prof. King wears bifocals, and cannot read small handwriting. Circle one: **True!** **Yes!** **Who??****b** A subset $S \subset \mathbb{C}$ is **path-connected** if**c** Complex number $[x + iy]^2 = -9i$, for *real numbers*

$$x = \text{_____} \quad \text{and} \quad y = \text{_____}.$$

d Note $[1 + i]^{166} = \left[\text{_____} \right] + i \cdot \left[\text{_____} \right]$.

[Hint: Multiplying complexes multiplies their moduli, and adds their angles.]

e All these sets are non-empty: Sets U and V are open. Sets K , E and E_n are closed. Sets S and T are each connected, i.e path-connected.Set $U \setminus K$ is open:

AT AF Nei

Set $U \cup K$ is open:

AT AF Nei

Set $E \cap K$ is closed:

AT AF Nei

Union $\bigcup_{n=1}^{\infty} E_n$ is closed:

AT AF Nei

 $\exists q \in [S \cap T]$; so $S \cup T$ is connected:

AT AF Nei

f The empty-set is connected:

T F

Punctured ball $\text{PBal}_2(3i)$ is connected:

T F

 $\text{Sph}_2(5i) \cap \text{Sph}_2(i)$ is connected:

T F

 $\text{Sph}_2(4i) \cup \text{Sph}_2(-i)$ is connected:

T F

 $\text{Sph}_2(5i) \cup \text{CldBal}_2(i)$ is closed:

T F

gLet $S := \text{PBal}_2(3i)$.

Its boundary

is $\partial(S) = \text{_____}$.[You may use our ball/sphere notation as well as \cup , \cap , complement and set-braces, to describe your answer.]**A2:** We've written $h(x + iy) = u(x, y) + iv(x, y)$, giving names to the real and imaginary parts of h .**i**Suppose h is differentiable at the point $3 + 2i$. Carefully state the Cauchy-Riemann eqns for h at $3 + 2i$.**ii**Suppose h is differentiable at a point $z \in \mathbb{C}$. Carefully derive the Cauchy-Riemann eqns, directly from the defn of "differentiable".**A1:** _____ 185pts**A2:** _____ 50pts**Total:** _____ 235pts