

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. [Hint: Fixing a point $q \in \partial(E_1 \cap E_2)$, we know there exist sequences $\vec{b} \subset E_1 \cap E_2$ and $\vec{x} \subset [E_1 \cap E_2]^c$ converging to q . You need to show, either for $j=1$ or $j=2$, that E_j^c includes a sequence \vec{y} that converges to q . Also, explain *why* the existence of such a \vec{y} is sufficient to establish (??).]

A1: Show no work. Fill-in *all* blanks on this sheet!

a Define $X :=$ $\subset \mathbb{R}$ st. the X -open ball $B := X\text{-Bal}_3(0) =$ satisfies $B \subsetneq \text{Cl}_X(B) =$ $\subsetneq X\text{-CldBal}_3(0) =$

b A subset $S \subset \Omega^{\text{MS}}$ is a **neighborhood** of point $p \in \Omega$ IFF

In $\Omega := \mathbb{R}$, the set $\mathbb{Q}_+ \cap [5, \infty)$ is a neighborhood...
... of 6: **True** **False**. ... of 5: **True** **False**.

c Let $\mathbf{v} := (2, -1) \in \mathbb{R}^2$; so $\|\mathbf{v}\|_3 =$

d Our space is \mathbb{R} with the usual Euclidean metric **I** $d(x, z) := |x - z|$. These *closed* bnded non-void intervals $A_n :=$, when unioned, form a set $\bigcup_{n=1}^{\infty} A_n =$ which is not closed.

II Suppose that U, V_1, V_2, \dots are open sets of \mathbb{R} , and E, K_1, K_2, \dots are closed sets. **Circle** those of the following sets which are guaranteed to be *closed* in \mathbb{R} .

$E \setminus U$. $U \setminus E$. $K_1 \setminus E$. $\bigcap_{n=1}^{\infty} K_n$.
 $\mathbb{R} \setminus \left[\bigcup_{n=1}^{\infty} V_n \right]$. $E \cup K_1$. $E \cap K_1$.

Essay questions: Please write each essay **triple-spaced**.
Each essay starts a new page.

A2: In MS (Ω, d) , sequence $\vec{b} \subset \Omega$ converges to both q and r in Ω . Prove that $q = r$, by showing that $d(q, r) = 0$. [Hint: Use the Triangle Inequality.]

A3: In \mathbb{R} : Prove, for all sets $E_1, E_2 \subset \mathbb{R}$, that

$$1: \quad \partial(E_1) \cup \partial(E_2) \supset \partial(E_1 \cap E_2).$$

[Hint: Fixing a point $q \in \partial(E_1 \cap E_2)$, we know there exist sequences $\vec{b} \subset E_1 \cap E_2$ and $\vec{x} \subset [E_1 \cap E_2]^c$ converging to q . You need to show, either for $j=1$ or $j=2$, that E_j^c includes a sequence \vec{y} that converges to q . Also, explain *why* the existence of such a \vec{y} is sufficient to establish (??).]

A1: 95pts
A2: 45pts
A3: 45pts

Total: 185pts

Please PRINT your **name** and **ordinal**. Ta:

Ord:

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: