

A1: Show no work.

Z Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. Circle one:

True! Yes! What's a sentence?

a The slope of line $3[y - 5] = 2[x - 2]$ is _____.

Point $(-4, y)$ lies on this line, where $y =$ _____.

b The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$ are $y =$ _____.

[Hint: Apply the Quadratic Formula to y^2 .]

c $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} =$ _____. $\log_8(4) =$ _____.

d $\frac{d}{dz} \left(\frac{\sin(3z)}{\cos(z+1)} \right) = \frac{f(z)}{g(z)}$ where
 $f(z) =$ _____
and $g(z) =$ _____.

e For $x > 0$, let $B(x) := x^{\sin(x)}$. Its derivative is

$B'(x) =$ _____.

[Hint: How is y^z , for $y > 0$, defined in terms of the exponential fnc?]

f For $x > 0$, let $B(x) := x^x$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals

[Hint: How is y^z , for $y > 0$, defined ITOf the exponential fnc?]

g Let $g(x) := x^3 + x$. Then $g^{-1}(10) =$ _____.

and $[g^{-1}]'(10) =$ _____.

h Compute the sum of this geometric series:

$$\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n =$$
 _____.

A2: Write the uppercase versions of the following Greek letters, along with their names.

Example: “ $\alpha:$ _____.” You fill in: A (alpha).

$\gamma:$ _____ $\lambda:$ _____ $\sigma:$ _____

$\delta:$ _____ $\omega:$ _____

End of Prereq-A

A1: _____ 90pts

A2: _____ 20pts

Total: _____ 110pts

Print name _____ Ord: _____

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: _____