

Please. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$. Use “ $f(x)$ notation” when writing fncs, in particular, for trig and log fncs. E.g. write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g. “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with **negative signs!**) Short answer: Show no work.

A6: Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a $A := \begin{bmatrix} \sqrt{2} & 0 & -\sqrt{3} \\ 0 & -1 & \frac{1}{5} \end{bmatrix}$. Then $A^2 = \underline{\dots}$.

b $M := \begin{bmatrix} -4 & 7 \\ 1 & 2 \end{bmatrix}$. Compute M^{-1} over these three fields.
[Write your \mathbb{Z}_p answers using symmetric residues.]

Over \mathbb{Z}_5 : $M^{-1} = \underline{\dots}$. Over \mathbb{Z}_7 : $M^{-1} = \underline{\dots}$.

Over \mathbb{Q} : $M^{-1} = \underline{\dots}$.

c $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}^{16} = \underline{\dots}$.

d,e Let $P: \mathbb{R}^{2 \times 2} \rightarrow$ be orthogonal projection on the slope=5 line through the origin. W.r.t. the std basis,

then, the 2×2 matrix $[P]_{\mathcal{E}}^{\mathcal{E}} = \underline{\dots}$.

A7: *Here*, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “Neither always true nor always false”. Below, $\mathbf{v}, \mathbf{w}, \mathbf{x}$ repr. *distinct, non-zero* vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please circle the correct response:

y1 If $\mathbf{x} \notin \text{Span}\{\mathbf{v}, \mathbf{w}\}$ then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. **AT AF Nei**

y2 Collection $\{\mathbf{0}, \mathbf{x}\}$ is linearly-indep. **AT AF Nei**

y3 $\text{Span}\{\mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{v} + 2\mathbf{w} + 3\mathbf{x}\}$ is all of \mathbb{R}^4 . **AT AF Nei**

y4 If none of $\mathbf{v}, \mathbf{w}, \mathbf{x}$ is a multiple of the other vectors, then $\{\mathbf{v}, \mathbf{w}, \mathbf{x}\}$ is linearly independent. **AT AF Nei**

A8: Let $R := \begin{bmatrix} \sqrt{3} & 1 \\ -1 & \sqrt{3} \end{bmatrix}$. Then

$$R^{147} = \left[\begin{array}{c} \dots \\ \dots \end{array} \right].$$

[Hint: The linear trn R is a rotation followed by a dilation.]

A9: A system of 3 linear equations in unknowns x_1, \dots, x_5 reduces to the augmented matrix

$$\left[\begin{array}{ccccc|c} 1 & 1 & 0 & 0 & 1 & 12 \\ 0 & 0 & 1 & 0 & -8 & 34 \\ 0 & 0 & 0 & 1 & 5 & -56 \end{array} \right] \text{ which is in RREF.}$$

Please circle each pivot entry.

OYOP, describe the general solution in this form,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each $\alpha, \beta, \gamma, \delta, \dots$ is a free variable (either x_1 or... or x_5), and each column vector has specific numbers in it. $\text{Dim}(\text{SolnFlat}) = \underline{\dots}$.

A10: OASSOP, write out the following sentences, and complete them to give the correct definitions. Be specific with phrases “every”, “all”, “some”, “there exists”, etc.. Avoid the word “any”.

A (possibly infinite) set $\mathcal{S} \subset \mathbf{V}$ of vectors is **linearly dependent** IFF...

A $K \times N$ matrix U is in **reduced row echelon form** IFF...

End of A-InClass

A-Home:	<u> </u>	255pts
A6:	<u> </u>	50pts
A7:	<u> </u>	20pts
A8:	<u> </u>	20pts
A9:	<u> </u>	40pts
A10:	<u> </u>	30pts

Total: 415pts

Please PRINT your **name** and **ordinal**. Ta:

Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature:

Filename: Classwork/LinearAlg/LinA2005t/a-cl.LinA2005t.
latex

As of: Monday 31Aug2015. Typeset: 16Mar2016 at 00:29.