

Staple!

Ord: _____

DynSys
MTG 6401

Class-A

Prof. JLF King
Touch: 6May2016

A1: _____ 115pts

A2: _____ 95pts

A3: _____ 25pts

Total: _____ 235pts

A1: Recall the Mean Ergodic Thm.

1: \mathbb{L}^2 -MET. Suppose $U: \mathbf{H} \rightarrow \mathbf{H}$ is a weak-contraction, $\|U\|_{op} \leq 1$, on a Hilbert space. Let P be orthogonal projection (an operator) onto \mathbf{W} , the (closed) subspace of U -invariant vectors. Let $A_N := \frac{1}{N} \sum_{k=0}^{N-1} U^k$. Then

$$A_N \xrightarrow{SoT} P, \quad \text{as } N \nearrow \infty.$$

I.e, for each $\mathbf{v} \in \mathbf{H}$, necessarily $A_N(\mathbf{v}) \rightarrow P(\mathbf{v})$. \diamond

a) Prove \mathbb{L}^2 -MET when U is a unitary operator, $U^* = U^{-1}$. (In this and the next part, if you want to assume that U is the Koopman operator of a mpt, that is fine.)

b) Prove, for a weak-contraction U , that a vector \mathbf{w} is U^* -invariant IFF \mathbf{w} is U -invariant. (You may use for free that $\|U^*\|_{op} = \|U\|_{op}$.)

Describe the modification to get the full \mathbb{L}^2 -MET, even if U is *not* unitary.

A2: Suppose $R = R_\alpha$ is an irrational rotation on the “circle” $X := [0, 1)$.

Prove that the R -forward-orbit of an arbitrary $z \in X$, is dense. (Please use $\mathcal{O}^+(z)$ for the orbit.)

A3: *Short answer; show no work.* Imagine we express points $x \in \mathbb{R}_+$ in base-4. Let $\Delta(z) \in [1..3]$ denote the *high-order fit* (four-ary digit) of the base-four numeral of z . Let $S: \mathbb{R}_+ \circlearrowright$ be the *doubling map*, $z \mapsto 2z$. Thus

$$\frac{1}{N} \sum_{k=0}^{N-1} \Delta(S^k z) \xrightarrow{N \rightarrow \infty} L,$$

where L is the number

(Make sure to write the base of any logarithms you use.)

Please PRINT your name and ordinal. Ta:

.....

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature:

.....

End of Class-A