

Hello. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed. **Write expressions unambiguously** e.g, “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with negative signs!)

Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$.

Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$.

Write *rational numbers* as fractions: E.g $\frac{1}{2}$ and $1/3$, but not 0.5 nor 0.3333...; **use fractions**.

A4: Show no work.

a Fnc $y_\beta(t) :=$ _____

is the general soln to $\frac{dy}{dt} = 8t^3 \cdot [y-5]$. [Hint: SoV.]

The *particular* $y()$ with $y(0) = 8$ is

$y(t) :=$ _____. And this

function has $y(1) =$ _____.

b Function $h()$ satisfies $2h'' + h' - 6h = 0$,
and initial conditions $(h(0) = 5)$ and $(h'(0) = -3)$. So

$$h(t) = \alpha e^{At} + \beta e^{Bt}, \text{ for numbers}$$

$$\alpha = \text{_____}, A = \text{_____}, \beta = \text{_____}, B = \text{_____}.$$

c Fnc $y_\alpha(t) :=$ _____

is the general soln to $y' + \left[\frac{2}{t} \cdot y\right] = t^3$. [Hint: FOLDE.]

A5: Show no work.

d DiffOperators **P, Q, R, S** are defined as

$$\begin{aligned} \mathbf{P}(f) &:= f(3) \cdot f', & \mathbf{Q}(f) &:= \cos(3) \cdot f^{(3)}, \\ \mathbf{R}(f) &:= [\cos(3) \cdot f] + f'', & \mathbf{S}(f) &:= \cos(3) + [3f']. \end{aligned}$$

Then... **P** is linear: $T \ F$. **Q** is linear: $T \ F$.
R is linear: $T \ F$. **S** is linear: $T \ F$.

e The discriminant of polynomial $f(x) := 3x^2 + 3x + 1$ is $\text{Discr}(f) =$ _____.

f Blanks $\in \mathbb{R}$. So $\frac{1}{1-3i} =$ _____ + $i \cdot$ _____.
Thus $\frac{-2+5i}{1-3i} =$ _____ + $i \cdot$ _____.

By the way, $|-4+5i| =$ _____.

End of A-Class

A4: 120pts

A5: 65pts

Total: 185pts