

Note. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$. Use “ $f(x)$ notation” when writing fncts; in particular, for trig and log fncts. E.g, write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g, “ $1/a+b$ ” should be bracketed either $[1/a]+b$ or $1/[a+b]$. (Be careful with **negative** signs!)

Use **cts** for “continuous” and **IVP** for “initial value problem”.

A1: Show no work.

Z If $\lim_{x \rightarrow 0^+} 8/x$ equals ∞ , then $\lim_{x \rightarrow 0^+} 5/x$ is **Circle**:

Prof. King's cap

a snowplow

a Let $\mathcal{L} := [\mathbf{D} + 2\mathbf{I}] [\mathbf{D} - 3\mathbf{I}]^2$. Then a gen.soln y to DE $\mathcal{L}(y) = 0$ is

$$y(t) = A \cdot \text{_____} + B \cdot \text{_____} + C \cdot \text{_____},$$

where A, B, C are arbitrary real numbers.

b $\mathcal{L}(t^2) = A_0 + A_1 t + A_2 t^2$ where

$$A_0 = \text{_____}, A_1 = \text{_____}, A_2 = \text{_____}.$$

c Give the general solution

$$q(t) = \text{_____}$$

to DE $q'' + q' - 6q = 0$.

d Function $x(t) := \text{_____}$

is the general soln to $\frac{dx}{dt} = 2x^2t$. [Hint: SoV]

(salt) begins to flow at a constant rate of 6 lit/min. The solution inside the tank is kept well stirred and is flowing *out* of the tank also at 6 lit/min.

Suppose that the concentration of salt in the entering-the-tank brine is 3 kg/lit. Use C_0 and $C_1(t)$ to denote the I/P and O/P concentrations of salt, in kg/lit.

Draw a large (use a whole page) *carefully labeled* picture of the tank and quantities and concentrations. Carefully *define* all quantities that YOU introduce in your solution. Carefully *explain* how you obtained your DE for $C_1(t)$, then how you solved it. Give the general solution

$$C_1(t) = \text{_____}$$

Also: The concentration of salt in the tank will reach 1 kg/lit at time $T = \text{_____}$.

Give a complete *explanation* about how you solved the IVP so as to compute T .

End of A-class

A1: _____ 125pts

A2: _____ 55pts

Total: _____ 180pts

Print name _____ Ord: _____

Essay question

Please write (on your own paper) in *complete grammatical sentences* a soln to the following problem. Write every 3rd line, please. (Don't Scrunch!) **Also fill in the blank(s).**

A2: Consider a large tank holding 1200lit (here, lit=liters) of pure water, into which a brine solution

HONOR CODE: “*I have neither requested nor received help on this exam other than from my professor.*”

Signature: _____