

Staple!

NT-Cryptography Class-A Prof. JLF King
MAT4930 2H22 Wednesday 20Feb2019

Please fill-in every *blank* on this sheet.

A5: Show no work. Write DNE if the object does not exist or the operation cannot be performed. $\mathcal{N}B$: $DNE \neq \{\} \neq 0 \neq$ Empty-word.

a Prof. King thinks that submitting a ROBERT LONG PRIZE ESSAY [typically 2 prizes, \$500 total] is a *really good idea*. A ten-page essay is fine. Date for the emailed-PDF is Thursday, 14March.

Circle: Yes True Résumé material!

b Consider the three congruences C1: $z \equiv_{21} 18$, C2: $z \equiv_{15} 3$, and C3: $z \equiv_{70} 53$. Let z_j be the *smallest natnum* [or DNE] satisfying (C1) \dots (Cj). Then

$$z_2 = \dots ; z_3 = \dots$$

c Modulo 187, the multiplicative-order of 87 is \dots . Hint: Our $187 = 11 \cdot 17$, and $\varphi(187)$ has few prime factors.

d With $A := 29$, $B := 20$, $U := A \cdot B = 580$, let \mathbf{J} be $(-290 \dots 290]$. There is a ring-iso $g: \mathbb{Z}_A \times \mathbb{Z}_B \rightarrow \mathbb{Z}_U$ sending (α, β) to $\langle G\alpha + H\beta \rangle_U$, using magic numbers

$$G = \dots \in \mathbf{J} \text{ and } H = \dots \in \mathbf{J}. \text{ A mod-}U \text{ root of poly } f(x) := 20 \cdot [x + 10]^3 + 29 \cdot [x - 2] \text{ is } (\dots, \dots) \xrightarrow{g} \dots \in \mathbf{J}.$$

e Alice's RSA code has modulus is $N = 851$, and encryption exponent $\mathbf{E} := 317$, both public. Bob has a message that can be interpreted as a number m in $[0 \dots N]$. Since Alice knows the secret factorization $N = p \cdot q$ into primes, $p=23$, $q=37$, she can compute the decryption exponent $\mathbf{d} = \dots \in \mathbb{Z}_+$. Bob's encrypted message $\mu := \langle m^{\mathbf{E}} \rangle_N = 007$. Alice decrypts it to $\langle \mu^{\mathbf{d}} \rangle_N = \dots \in [0 \dots N]$.

OYOP: In grammatical English *sentences*, write your essay on every 2nd line (usually), so that I can easily write between the lines.

A6: EFT says: For each posint N , every integer $\mathbf{b} \perp N$ satisfies $\mathbf{b}^{\varphi(N)} \equiv_N 1$.

Write a careful proof of this Euler-Fermat Thm. Recall that Φ_N is the units group of \mathbb{Z}_N , and $\varphi(N) := |\Phi_N|$.

You may use \equiv for \equiv_N , and use $U := \Phi_N$.

End of Class-A

A5: _____ 125pts

A6: _____ 45pts

Total: _____ 170pts

Please PRINT your **name** and **ordinal**. Ta:

Ord: _____

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: _____

Jeffrey problems next col/page.

1: Jeffrey A (Joey #?) For N and $B \geq 2$ positive integers,
(Dis) Prove: $\varphi(B^N - 1) \equiv_N 0$. ◇

Continuing...

2: Jeffrey B (HMMT2019.Febr) (Joey #?) Fix prime $p > 2$ and polynomial ring $\Gamma := \mathbb{Z}_p[[x]]$. Find the number of ordered-pairs (f, g) of polynomials, $f, g \in \Gamma$, satisfying

$$g(f(x)) \stackrel{\text{in } \Gamma}{\equiv} x^{p^2} - x.$$

◇