

A1: Show no work.

a Cubic polynomial $h(x) := [x + 5][x - 11][x + 37]$ has K many roots in \mathbb{Z}_8 , and N many roots in \mathbb{Z}_{120} , where $K = \underline{\dots}$ and $N = \underline{\dots}$. [Hint: CRT.]

b Euler $\varphi(36300) = 2^A \cdot 3^B \cdot 5^C \cdot 7^D \cdot 11^E$, where $A = \underline{\dots}$, $B = \underline{\dots}$, $C = \underline{\dots}$, $D = \underline{\dots}$, $E = \underline{\dots}$.

As a single number, $\tau(36300) = \underline{\dots}$.

c Fix a prime q and natnums J and R . Then a closed-formula for σ_J is: $\sigma_J(q^R) = \underline{\dots}$.

Apply the [correct] CF; leave your answer as a product: $\sigma_2(140) = \underline{\dots}$

d The *Blip-numbers* comprise $\mathcal{B} := 1 + 3\mathbb{N}$.
 \mathcal{B} -number $385 \stackrel{\text{note}}{=} 35 \cdot 11$ is \mathcal{B} -irreducible: $T \quad F$
 \mathcal{B} -number $N := 85$ is not \mathcal{B} -prime because \mathcal{B} -numbers $J := \underline{\dots}$ and $K := \underline{\dots}$ satisfy that $N \nmid [J \cdot K]$, yet $N \nmid J$ and $N \nmid K$.

e Multinomial $\binom{9}{4, 2, 3} = \underline{\dots} = \underline{\dots}$.

[Note: Write your ans. ITOf factorials, then also write it as a single integer, or product of two, without factorials.]

OYOP: In grammatical English *sentences*, write your essays on every *third* line (usually), so that I can easily write between the lines. Start each essay on a *new* sheet of paper.

A2: State Wilson's Thm. Carefully prove Wilson's Thm.

More on next page...

A3: Let $T_d := 18^d + 1$ for $d = 3, 5, 7, 9, 11, \dots$. Prove

that each such T_d is composite.
 [Hint: Look at $T_{\text{Odd}} \bmod N$, for an appropriate N .]

End of Class-A

A1: 125pts

A2: 45pts

A3: 35pts

Total: 205pts