

Staple!

Abstract Algebra **Class-A** Prof. JLF King
MAS4301 09B1 Wednesday, 25Sep2019

Ord: _____

Hello. Write **DNE** if the object does not exist or the operation cannot be performed. NB: **DNE** $\neq \{\} \neq 0 \neq$ Empty-word.

Let F and R be the *flip* and *rotation* in the dihedral group \mathbb{D}_N , with $F^2=e$, $R^N=e$ and $RF=FR=e$. Use R^j and R^jF as the standard form of each element in \mathbb{D}_N .

Fill-in *all* blanks on this sheet **including** the blanks for the essay question.

A5: Show no work.

a Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. one:

True! Yes! wH'at S a?sEnTENcE

b Euler $\varphi(29,000,000) =$ _____.

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of *primes* to posint powers, with $p_1 < p_2 < \dots$

c There are _____ non-id-elt involutions in \mathbb{D}_{104} .

d Each $h \in \mathbb{D}_{10}$ yields an inner-auto $J_h(x) := h x h^{-1}$. Writing elts in form $R^k F^s$, two *distinct* $\alpha, \beta \in \mathbb{D}_{10}$ with

$J_\alpha = J_\beta$ are $\alpha =$ _____ and $\beta =$ _____.

e In \mathbb{S}_{15} , in terms of multinomial-coeffs and factorials:
There are _____ many solo 15-cycles. And the

$\#\{$ Elements of _____
order 35 $\} =$ _____.

f Cards $0, 1, \dots, 7$ are fed into a shuffling machine, then the output is fed back in, resulting in $5, 4, 0, 2, 6, 7, 1, 3$. So after the first pass, the cards were in order

OYOP: In grammatical English **sentences**, write your essay on every 2nd line (usually), so that I can easily write between the lines.

A6: A group G engenders its group of inner-automorphisms $\text{Inn}(G) := \{J_h \mid h \in G\}$, where $J_h(x) := h x h^{-1}$.

PROVE: Each finite group G satisfies

$$\dagger: \quad |\text{Inn}(G)| = \frac{|G|}{|\text{Z}(G)|},$$

where $\text{Z}(G)$ is the center of G .

End of Class-A

A-Home: _____ 295pts

A5: _____ 110pts

A6: _____ 45pts

Total: _____ 450pts