

This practice prereq is much longer than the actual prereq will be.

A1: In complete English sentences, on your own sheets of paper, please write, (double-spaced), the following definitions and proofs, **Do not restate the problem.**

i A number $\beta \in \mathbb{C}$ is **algebraic** IFF \dots .

ii The degree of β is \dots .

p1 The Chinese Remainder Theorem says \dots

p2 Let $T_n := 18^n + 1$ for $n = 3, 5, 7, 9, 11, \dots$. Prove that each such T_n is composite.

p3 Define a sequence $\vec{b} = (b_0, b_1, b_2, \dots)$ by $b_0 := 0$ and $b_1 := 3$ and

$$\dagger: \quad b_{n+2} := 7b_{n+1} - 10b_n, \quad \text{for } n = 0, 1, \dots$$

Use induction to prove, for all $k \in [0.. \infty)$, that

$$\ddagger: \quad b_k = 5^k - 2^k.$$

Further. Given recurrence (\dagger) and initial conditions, explain how you could have discovered/computed the numbers 5 and 2 in the (\ddagger) formula.

Can you generalize to getting a (\ddagger) -like formula when the recurrence is $b_{n+2} := \mathbf{S}b_{n+1} - \mathbf{P}b_n$, for arbitrary real-number coefficients \mathbf{S} and \mathbf{P} ?

A2: Math-Greek alphabet: Please write the **two** missing data of lowercase/uppercase/name. Eg:

“iota: $\alpha:$ $\beta:$ $\gamma:$ ” You fill in: $\underline{\alpha}$ $\underline{\beta}$ $\underline{\gamma}$

$\Sigma:$ $\Delta:$ $\Upsilon:$

$\gamma:$ $\omega:$ $\zeta:$

lambda ν rho xi

A3: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a And $y = \dots$ is the smallest natnum with

$$y \equiv_{20} 1, \quad y \equiv_{15} 11, \quad y \equiv_{12} 5.$$

b $N := \varphi(100) = \dots$. So $\varphi(N) = \dots$.
EFT says that $3^{1621} \equiv_N \dots \in [0..N]$. Hence (by EFT) last two digits of $7^{[3^{1621}]} \dots$ are \dots .

c Euler $\varphi(121000) = \dots$.
Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$

d May lightning \ddagger strike this table! (I.e, please fill in.)

n	r_n	q_n	s_n	t_n
0	100	—	1	0
1	23		0	1
2				
3				
4				
5				
6				

$$\text{Thus } 1 = [\dots \cdot 100] + [\dots \cdot 23].$$

e LBolt gives $G := \text{Gcd}(1533, 413) = \dots$. And $1533S + 413T = G$, where $S = \dots$ & $T = \dots$ are integers.

f LBolt: $\text{Gcd}(70, 42) = \dots \cdot 70 + \dots \cdot 42$.
So (LBolt again) $G := \text{Gcd}(70, 42, 60) = \dots$ and $\dots \cdot 70 + \dots \cdot 42 + \dots \cdot 60 = G$.

g Note that $\text{Gcd}(15, 21, 35) = 1$. Find particular integers S, T, U so that $15S + 21T + 35U = 1$:
 $S = \dots$, $T = \dots$, $U = \dots$.
[Hint: $\text{Gcd}(\text{Gcd}(15, 21), 35) = 1$.]

h Mod $K := 50$, the recipr. $\langle \frac{1}{21} \rangle_K = \dots \in [0..K]$.

[Hint: \ddagger] So $x = \dots \in [0..K)$ solves $4 - 21x \equiv_K 1$.

- i** Consider the three congruences C1: $z \equiv_{21} 18$, C2: $z \equiv_{15} 3$, and C3: $z \equiv_{70} 53$. Let z_j be the *smallest natnum* [or **DNE**] satisfying (C1) $\text{All } (C_j)$. Then
- $$z_2 = \dots ; z_3 = \dots ; z_4 = \dots$$
- j** Consider the four congruences C1: $z \equiv_8 1$, C2: $z \equiv_{18} 15$, C3: $z \equiv_{21} 18$ and C4: $z \equiv_{10} 3$. Let z_j be the *smallest natnum* satisfying (C1) $\text{All } (C_j)$. Then
- $$z_2 = \dots ; z_3 = \dots ; z_4 = \dots$$
- k** If $5^K \parallel 1000$, then $K = \dots$
- l** If $7^e \parallel [2007!]$, then $e = \dots$
- m** Let $N := 9876!$ (factorial). Written in base-10, this N ends in \dots many zeros?
- A4:** Here are High-school and calculus problems. Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.
- Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.
- n** Line $y = Mx + B$ is orthogonal to $y = \frac{1}{5}x + 2$ and owns $(4, 10)$. So $M = \dots$ and $B = \dots$
- o** The solutions to $7x^2 = 2 - 5x$ are $x = \dots$
- p** $[\sqrt{5}^{\sqrt{2}}]^{\sqrt{32}} = \dots$. $\log_{81}(27) = \dots$
- q** If $\log_B(64) = 3$ then $B = \dots$
- r** Repeating decimal $2.3\overline{841}$ equals $\frac{n}{d}$, where posints $n \perp d$ are $n = \dots$ and $d = \dots$
- s** Compute the sum of this geometric series:
- $$\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n = \dots$$
- t** For natural number K , the sum $\sum_{n=3}^{3+K} 4^n$ equals \dots
- u** $\sum_{n=1}^{\infty} r^n = \frac{5}{8}$. So $r = \dots$ or **DNE**.
- [Hint: The sum starts with n at **one**, not zero.]
- v** Let $y = f(x) := [5 - \sqrt[7]{x}]/3$. Its inverse-function is $f^{-1}(y) = \dots$
- A5:** More proofs.
- a** **Prove:** THM: There are *only* many primes.
- Start with...* **PROOF:** FTSOContradiction, suppose
- $\ast: p_1 < p_2 < \dots < p_k < \dots < p_{L-1} < p_L$ is a list of all prime numbers. I will now produce a prime q which *differs* from every member of (\ast) , as follows. (*Continue your proof from here.*)