

A1: Show no work. *NOTE:* The inverse-fnc of g , often written as g^{-1} , is *different* from the reciprocal fnc $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

This is an Open Brain but No calculator exam.

a The slope of line $5[y - 1] = 3[x - 2]$ is _____.

Point $(-8, y)$ lies on this line, where $y =$ _____.

b Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(3, -1)$. So $M =$ _____ and $B =$ _____.

c The solutions to $3x^2 = 2 - 2x$ are $x =$ _____.

d $[\sqrt{2}^{\sqrt{27}}]^{\sqrt{3}} =$ _____ . $\log_8(4) =$ _____ .

e Let $y = f(x) := [5 + \sqrt[3]{x}]/2$. Its inverse-function is $f^{-1}(y) =$ _____.

f Let $g(x) := x^3 + x$. Then $g^{-1}(-10) =$ _____.

and $[g^{-1}]'(-10) =$ _____.

g For $x > 0$, let $B(x) := x^x$. Its derivative is $B'(x) =$ _____.

[Hint: How is y^z , for $y > 0$, defined in terms of the exponential fnc?]

h Below, f and g are differentiable fncs with

$$f(2) = 3, \quad f(3) = 5, \quad f'(2) = 19, \quad f'(3) = 17,$$

$$g(2) = 11, \quad g(3) = 13, \quad g'(2) = \frac{1}{2}, \quad g'(3) = 7,$$

$$f(5) = 43, \quad g(5) = 23, \quad f'(5) = 41, \quad g'(5) = 29.$$

Define the composition $C := g \circ f$. Then $C(2) =$ _____; $C'(2) =$ _____.

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

i Compute the sum of this geometric series: $\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n =$ _____.

j

For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n$$

equals _____.

A2: Math-Greek alphabet: Please write the two missing data of lowercase/uppercase/name. Eg:

"iota: $\alpha:$ _____ B: _____." You fill in: $\iota \ I \ A \ \alpha \ \beta \ \betaeta$

H: _____ $\Upsilon:$ _____ $\Delta:$ _____

$\sigma:$ _____ $\gamma:$ _____ $\xi:$ _____

lambda _____ psi _____ omega _____ mu _____

End of Prereq-A

A1: _____ 100pts

A2: _____ 20pts

Total: _____ 120pts

Print
name _____

Ord: _____

HONOR CODE: "I have neither requested nor received help on this exam other than from my professor."

Signature: _____