

A1: Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Line $y = [M \cdot x] + B$ owns points $(4, 3)$ and $(-2, 5)$. Hence $M =$ and $B =$

b Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(2, 1)$. So $M =$ and $B =$

c The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$ are $y =$

[Hint: Apply the Quadratic Formula to y^2 .]

d $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} =$. $\log_{64}(8) =$.

e Let $y = f(x) := [7 - \sqrt[5]{x}]/3$. Its inverse-function is $f^{-1}(y) =$

f Let $g(x) := x^3 - x$. Then $g^{-1}(6) =$ and $[g^{-1}](6) =$

g For $x > 0$, let $B(x) := x^{\sin(x)}$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals

[Hint: How is y^z , for $y > 0$, defined ITOf the exponential fnc?]

h Below, f and g are differentiable fncs with

$$\begin{aligned} f(2) &= 3, & f(3) &= 5, & f'(2) &= 19, & f'(3) &= 17, \\ g(2) &= 11, & g(3) &= 13, & g'(2) &= \frac{1}{2}, & g'(3) &= 7, \\ f(5) &= 43, & g(5) &= 23, & f'(5) &= 41, & g'(5) &= 29. \end{aligned}$$

Define the composition $C := g \circ f$. Then

$$C(2) = ; C'(2) = .$$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

i Compute the sum of this geometric series: $\sum_{n=3}^{\infty} [-1]^n \cdot 2/3^n =$

j

For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n$$

$$\sum_{n=1}^{\infty} r^n = \frac{5}{8}. \text{ So } r =$$

or **DNE**.

[Hint: The sum starts with n at **one**, not zero.]

A2: Math-Greek alphabet: Please write the **two** missing data of lowercase/uppercase/name. Eg:

“iota: $\alpha:$ $\beta:$.” You fill in: ι I A **alpha** β **beta**

$\Omega:$ $\Psi:$ $H:$

$\sigma:$ $\gamma:$ $\lambda:$

theta rho delta mu

End of Prereq-A

A1: _____ 110pts

A2: _____ 20pts

Total: _____ 130pts

Print
name

Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: _____