

A1: Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

This is an **Open Brain** but **No calculator** exam.

a The **slope** of line $5[y - 1] = 3[x - 2]$ is _____.

Point $(-8, y)$ lies on this line, where $y =$ _____.

b Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(3, -1)$. So $M =$ _____ and $B =$ _____.

c The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$ are $y =$ _____.

[Hint: Apply the Quadratic Formula to y^2 .]

d $[\sqrt{2}^{\sqrt{27}}]^{\sqrt{3}} =$ _____ . $\log_8(4) =$ _____ .

e Let $y = f(x) := [5 + \sqrt[3]{x}]/2$. Its inverse-function is $f^{-1}(y) =$ _____.

f Suppose g is a fnc with g' never zero. Let h be the inverse-fnc of g . In terms of h , g , g' and x , write a formula for $h'(x) =$ _____.

[Hint: The Chain rule. *NOTE:* h is **NOT** $1/g$.]

g Let $g(x) := x^3 + x$. Then $g^{-1}(-10) =$ _____.

and $[g^{-1}]'(-10) =$ _____.

h For $x > 0$, let $B(x) := x^x$. Its derivative is

$B'(x) =$ _____.

[Hint: How is y^z , for $y > 0$, defined in terms of the exponential fnc?]

i

Below, f and g are differentiable fncs with

$$\begin{aligned} f(2) &= 3, & f(3) &= 5, & f'(2) &= 19, & f'(3) &= 17, \\ g(2) &= 11, & g(3) &= 13, & g'(2) &= \frac{1}{2}, & g'(3) &= 7, \\ f(5) &= 43, & g(5) &= 23, & f'(5) &= 41, & g'(5) &= 29. \end{aligned}$$

Define the composition $C := g \circ f$. Then

$$C(2) = \text{_____}; \quad C'(2) = \text{_____}.$$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

j

For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n \text{ equals } \text{_____}.$$

k

$$\sum_{n=1}^{\infty} r^n = 2008. \text{ So } r = \text{_____} \text{ or DNE.}$$

[Hint: The sum starts with n at **one**, not zero.]

A2: Math-Greek alphabet: Please write the **two** missing data of lowercase/uppercase/name. Eg:

“iota:	$\alpha:$	$B:$	_____	You fill in: $\iota \text{ I } \text{A } \alpha \text{ } \beta \text{ } \beta \text{eta}$
H:	Y:	$\Delta:$	_____	_____
$\sigma:$	$\gamma:$	$\xi:$	_____	_____
lambda	psi	omega	mu	_____

End of Prereq-A

A1: _____ 110pts

A2: _____ 20pts

Total: _____ 130pts

HONOR CODE: *“I have neither requested nor received help on this exam other than from my professor (or his colleague).”*

Name/Signature/Ord

Ord: _____