

**Please.** Use “ $f(x)$  notation” when writing fncs; in particular, for trig and log fncs. E.g, write “ $\sin(x)$ ” rather than the horrible  $\sin x$  or  $[\sin x]$ . Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than  $.9797\dots$ . Write expressions unambiguously e.g, “ $1/a+b$ ” should be bracketed either  $[1/a]+b$  or  $1/[a+b]$ . (Be careful with **negative** signs!)

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

**A1:** Show no work.

**[z]** What is a polar bear? Answer:  
*A rectangular bear after a coordinate transform.*

**[a]** The slope of line  $3[y-5] = 2[x-1]$  is \_\_\_\_\_.

Point  $(4, y)$  lies on this line, where  $y =$  \_\_\_\_\_.

**[b]** The solutions to equation  $3x^2 = 1 - x$  are  
 $x =$  \_\_\_\_\_.

**[c]**  $\left[\sqrt{3}^{\sqrt{2}}\right]^{\sqrt{8}} =$  \_\_\_\_\_,  $\log_8(4) =$  \_\_\_\_\_.

**[d]** Let  $B(x) := x^x$ . Its derivative, then, is  
 $B'(x) =$  \_\_\_\_\_.  
[Hint: How is  $x^x$  defined ITOf the exponential fnc?]

**[e]** For fnc  $y = h(x) := [5 + \sqrt[3]{x}]/2$ , its inverse fnc is  $h^{-1}(y) =$  \_\_\_\_\_.

**[f]** Suppose  $g$  is a fnc with  $g'$  never zero. Let  $h$  be the inverse fnc of  $g$ . In terms of  $h$ ,  $g$  and  $g'$ , write a formula for  $h'(x) =$  \_\_\_\_\_.

[Hint: The Chain rule.]

**[f\*]** Let  $g(x) := x^3 + x$ . Then  $g^{-1}(10) =$  \_\_\_\_\_.  
and  $[g^{-1}]'(10) =$  \_\_\_\_\_.



Below,  $f$  and  $g$  are differentiable fncs with

$$\begin{aligned}f(2) &= 3, & f'(2) &= 19, & f(3) &= 5, & f'(3) &= 17, \\g(2) &= 11, & g'(2) &= \frac{1}{2}, & g(3) &= 13, & g'(3) &= 7, \\& & & & g(5) &= 23, & g'(5) &= 29.\end{aligned}$$

Define the composition  $C := g \circ f$ . Then

$$C(2) = \text{_____}; \quad C'(2) = \text{_____}.$$

Please write each answer as a product of numbers;  
**do not** multiply out. [Hint: The Chain rule.]



Compute the sum of this geometric series:

$$\sum_{n=0}^{\infty} [-1]^n \cdot [3/5]^n = \text{_____}.$$



The Taylor series, centered at zero, for  $\cos(2x)$  is  
 $\cos(2x) =$  \_\_\_\_\_.

**A2:** Write the uppercase versions of the following Greek letters, along with their names.

Example: “ $\alpha:$  \_\_\_\_\_.” You fill in: *A (alpha)*.

$\eta:$  \_\_\_\_\_  $\lambda:$  \_\_\_\_\_  $\sigma:$  \_\_\_\_\_  
 $\mu:$  \_\_\_\_\_  $\gamma:$  \_\_\_\_\_

End of Prereq-A

**A1:** \_\_\_\_\_ 110pts

**A2:** \_\_\_\_\_ 10pts

**Total:** \_\_\_\_\_ 120pts

**HONOR CODE:** *“I have neither requested nor received help on this exam other than from my professor (or his colleague).”*

Name/Signature/Ord

Ord: \_\_\_\_\_