

A1: Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

l1 The **slope** of line $3[y - 5] = 2[x - 2]$ is _____ .
Point $(-4, y)$ lies on this line, where $y = \text{_____}$.

l2 Line $y = [M \cdot x] + B$ owns points $(4, 3)$ and $(-2, 5)$.
Hence $M = \text{_____}$ and $B = \text{_____}$.

l3 Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(2, 1)$. So $M = \text{_____}$ and $B = \text{_____}$.

q1 The solutions to $3x^2 = 2 - 2x$
are $x = \text{_____}$.

q2 The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$
are $y = \text{_____}$.

[Hint: Apply the Quadratic Formula to y^2 .]

e1 $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} = \text{_____}$. $\log_{64}(16) = \text{_____}$.

i Let $y = f(x) := [2 + \sqrt[5]{x}]/3$. Its inverse-function is $f^{-1}(y) = \text{_____}$.

id1 Suppose g is a fnc with g' never zero. Let h be the inverse-fnc of g . In terms of h , g , g' and x , write a formula for $h'(x) = \text{_____}$.

[Hint: The Chain rule. *NOTE:* h is NOT $1/g$.]

id2 Let $g(x) := x^3 - x$. Then $g^{-1}(6) = \text{_____}$
and $[g^{-1}]'(6) = \text{_____}$.

dq $\frac{d}{dz} \left(\frac{\sin(3z)}{\cos(z+1)} \right) = \frac{f(z)}{g(z)}$ where
 $f(z) = \text{_____}$
and $g(z) = \text{_____}$.

de1 For $x > 0$, let $B(x) := x^x$. Its derivative is $B'(x) = \text{_____}$.

[Hint: How is y^z , for $y > 0$, defined in terms of the exponential fnc?]

a For $x > 0$, let $B(x) := x^{\sin(x)}$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals _____ .

[Hint: How is y^z , for $y > 0$, defined ITOF the exponential fnc?]

de2 On those x where $\sin(x) > 0$, define $B(x) := [\sin(x)]^x$. Its derivative is $B'(x) = \text{_____}$.

[Hint: How is y^z , for $y > 0$, defined ITOF the exponential fnc?]

dc1 Below, f and g are differentiable fncs with

$$\begin{aligned} f(2) &= 3, & f(3) &= 5, & f'(2) &= 19, & f'(3) &= 17, \\ g(2) &= 11, & g(3) &= 13, & g'(2) &= \frac{1}{2}, & g'(3) &= 7, \\ f(5) &= 43, & g(5) &= 23, & f'(5) &= 41, & g'(5) &= 29. \end{aligned}$$

Define the composition $C := g \circ f$. Then

$$C(2) = \text{_____}; \quad C'(2) = \text{_____}.$$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

sg1 Compute the sum of this geometric series:
 $\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n = \text{_____}$.

A2: Math-Greek alphabet: Please write the **two** missing data of lowercase/uppercase/name. Eg:

“iota: $\alpha: \text{_____}$ B: _____ ” You fill in: $\iota \text{ I } \alpha \text{ alpha } \beta \text{ beta}$
 $\Omega: \text{_____}$ $\Psi: \text{_____}$ H: _____
 $\sigma: \text{_____}$ $\gamma: \text{_____}$ $\lambda: \text{_____}$
theta rho delta mu

End of Prereq-A

A1: _____ 180pts

A2: _____ 20pts

Total: _____ 200pts

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor (or his colleague)."*

Name/Signature/Ord

Ord:

.....