

A1: Show no work. *NOTE:* The **inverse-fnc** of g , often written as g^{-1} , is *different* from the **reciprocal fnc** $1/g$. E.g, suppose g is invertible with $g(-2) = 3$ and $g(3) = 8$: Then $g^{-1}(3) = -2$, yet $[1/g](3) \stackrel{\text{def}}{=} 1/g(3) = 1/8$.

Write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

This is an **Open Brain** but **No calculator** exam.

l1 The **slope** of line $3[y - 5] = 2[x - 2]$ is _____.

Point $(-4, y)$ lies on this line, where $y =$ _____.

l2 Line $y = [M \cdot x] + B$ owns points $(4, 3)$ and $(-2, 5)$. Hence $M =$ _____ and $B =$ _____.

l3 Line $y = Mx + B$ is orthogonal to $y = \frac{1}{3}x + 2$ and owns $(2, 1)$. So $M =$ _____ and $B =$ _____.

q1 The solutions to $3x^2 = 2 - 2x$ are $x =$ _____.

q2 The four solutions to $[y - 2] \cdot y \cdot [y + 2] = -1/y$ are $y =$ _____.

[Hint: Apply the Quadratic Formula to y^2 .]

e1 $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} =$ _____ . $\log_{64}(16) =$ _____.

i Let $y = f(x) := [2 + \sqrt[5]{x}]/3$. Its inverse-function is $f^{-1}(y) =$ _____.

id1 Suppose g is a fnc with g' never zero. Let h be the inverse-fnc of g . In terms of h , g , g' and x , write a formula for $h'(x) =$ _____.

[Hint: The Chain rule. *NOTE:* h is **NOT** $1/g$.]

id2 Let $g(x) := x^3 + x$. Then $g^{-1}(10) =$ _____.

and $[g^{-1}]'(10) =$ _____.

dq $\frac{d}{dz} \left(\frac{\sin(3z)}{\cos(z+1)} \right) = \frac{f(z)}{g(z)}$ where

$f(z) =$ _____.

and $g(z) =$ _____.

de1'

For $x > 0$, let $B(x) := x^{\sin(x)}$. Hence its derivative is $B'(x) = B(x) \cdot M(x)$, where $M(x)$ equals _____.

[Hint: How is y^z , for $y > 0$, defined ITO of the exponential fnc?]

dc1

Below, f and g are differentiable fncs with

$$\begin{aligned} f(2) &= 3, & f(3) &= 5, & f'(2) &= 19, & f'(3) &= 17, \\ g(2) &= 11, & g(3) &= 13, & g'(2) &= \frac{1}{2}, & g'(3) &= 7, \\ f(5) &= 43, & g(5) &= 23, & f'(5) &= 41, & g'(5) &= 29. \end{aligned}$$

Define the composition $C := g \circ f$. Then

$$C(2) = \text{_____}; \quad C'(2) = \text{_____}.$$

Please write each answer as a product of numbers; **do not** multiply out. [Hint: The Chain rule.]

sg1

Compute the sum of this geometric series:

$$\sum_{n=3}^{\infty} [-1]^n \cdot [3/5]^n = \text{_____}.$$

sg2

For natural number K , the sum

$$\sum_{n=3}^{3+K} 4^n \text{ equals } \text{_____}.$$

sg3

$\sum_{n=1}^{\infty} r^n = 2009$. So $r =$ _____ or **DNE**.

[Hint: The sum starts with n at **one**, not zero.]

A2: Math-Greek alphabet: Please write the **two** missing data of lowercase/uppercase/name. Eg:

“iota: $\alpha:$ _____ B: _____.” You fill in: I A **alpha** β **beta**

$\Omega:$ _____ $\Psi:$ _____ H: _____

$\sigma:$ _____ $\gamma:$ _____ $\lambda:$ _____

theta rho delta mu

A1: _____ 180pts

A2: _____ 20pts

Total: _____ 200pts

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor (or his colleague).”

Name/Signature/Ord

Ord: _____