

Open brain/calculator, closed book/notes. If a question is not well-defined, then write **DNE** for *Does Not Exist*. Use $\varphi()$ for the Euler phi-fnc. Essays violate the CHECKLIST at *Grade Peril!*

A4: Carefully state Fermat's Little Thm.

Carefully state the Euler-Fermat Thm.

Carefully state the Legendre-symbol Thm.

Carefully state the Quadratic-reciprocity Thm.

Carefully state the Jacobi-symbol Thm.

Carefully state the Primitive-root Thm.

Carefully state Hensel's Lemma.

Carefully state the Huffman-coding Thm.

Describe the *Elias code* from natnums into bitstrings.

A5: Short answer: Show no work.

a

Consider the four congruences C1: $z \equiv_8 1$, C2: $z \equiv_{18} 15$, C3: $z \equiv_{21} 18$ and C4: $z \equiv_{10} 3$. Let z_j be the *smallest natnum* satisfying (C1) \dots (Cj). Then

$$z_2 = \dots ; z_3 = \dots ; z_4 = \dots$$

b

$$\text{Euler } \varphi(77000) = \dots$$

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$

c

$$N := \varphi(100) = \dots \text{ So } \varphi(N) = \dots$$

EFT says that $3^{3221} \equiv_N \dots \in [0..N]$. Hence (by

EFT) last two digits of $7^{[3^{3221}]} \dots$

d

$$\text{LBolt: } \text{Gcd}(72, 45) = \dots \cdot 72 + \dots \cdot 45.$$

So (LBolt again) $G := \text{Gcd}(72, 45, 105) = \dots$ and

$$\dots \cdot 72 + \dots \cdot 45 + \dots \cdot 105 = G.$$

e

$$\text{Magic integers } G_1 = \dots, G_2 = \dots,$$

$G_3 = \dots$, each in $(-165..165]$, are st. mapping

$g: \mathbb{Z}_6 \times \mathbb{Z}_5 \times \mathbb{Z}_{11} \rightarrow \mathbb{Z}_{330}$ is a ring-isomorphism, where

$$g((z_1, z_2, z_3)) := \left\langle z_1 G_1 + z_2 G_2 + z_3 G_3 \right\rangle_{330}.$$

Verify for your map: $g((1, 1, 1)) = 1$ and $[5 \cdot 11] \bullet G_1$ and analogously for G_2 and G_3 .

f

As polynomials in $\mathbb{Z}_7[x]$, let

$$B(x) := x^4 + 2x^3 + 3x^2;$$

$$C(x) := x^3 + 3x^2 + 5x + 3.$$

Write t.fol polys, using coeffs in $[-3..3]$. Compute quotient and remainder polynomials,

$$q(x) = \dots \quad \& \quad r(x) = \dots,$$

with $B = [q \cdot C] + r$ and $\text{Deg}(r) < \text{Deg}(C)$.

g

Note $p := 113$ is prime. The (multiplicative) order of $2 \pmod{113}$ is \dots .

[Hint: $113 - 1$ equals $2^4 \cdot 7$.]

h

TMWFIT, 8 is a mod-125 primroot, since its mult-order $(\pmod{125})$ is $100 \stackrel{\text{note}}{=} \varphi(125)$. Use the CRT-isomorphism to compute the corresponding mod-250 primroot $R = \dots \in [0..250)$.

i

With $V := 28 + 21i$ and $D := 5 + 3i$, produce GIs $q = \dots$ and $r = \dots$ s.t $V = [Dq] + r$, with norm $\mathcal{N}(r) < \mathcal{N}(D)$. (Recall that $\mathcal{N}(x + yi) = x^2 + y^2$, when $x, y \in \mathbb{Z}$.)

[Hint: Mult. V and D by \overline{D} .]

j

Bitstring “000100010111111101101001”, via the Elias code, decodes to \dots ,

a sequence of *natnums* [hint: gun-blip-blip], followed by noise-bits \dots .

$$\text{Conv, Elias}(91) = \dots$$

(bitstring)

A6: Please state Wilson's Thm. Now give a careful detailed proof. [Bonus for Legendre-Symbol Theorem]

A7: Let $f(x) := x^2 - 4x - 2$ and $z_0 := c_0 := 1$. Note $f(z_0) \equiv_5 0$. Note $f'(z_0) = \dots \not\equiv_5 0$.

Use Hensel's lemma repeatedly to compute coefficients $c_k \in [-2..2]$ (these are the blanks, below)

$$z_3 = \underbrace{c_0 \cdot 5^0 + \dots \cdot 5^1}_{z_2} + \dots \cdot 5^2 + \dots \cdot 5^3$$

so that integers $z_k := \sum_{i=0}^k c_i 5^i$ satisfy

$$f(z_k) \equiv_{5^{k+1}} 0,$$

for $k = 1, 2, 3$.