

Open brain/calculator, closed book/notes. If a question is not well-defined, then write **DNE** for *Does Not Exist*. Use $\varphi()$ for the Euler phi-fnc. Essays violate the CHECKLIST at *Grade Peril!*

A4: Short answer: Show no work.

Z Prof. King believes that writing in complete, coherent sentences is crucial in communicating Mathematics, improves posture, and whitens teeth. one:

True! Yes! **What's a sentence?**

a Euler $\varphi(34300) =$

Express your answer as a product $p_1^{e_1} \cdot p_2^{e_2} \dots$ of primes to posint powers, with $p_1 < p_2 < \dots$

b Consider the four congruences C1: $z \equiv_{21} 1$, C2: $z \equiv_{18} 7$, C3: $z \equiv_{20} -13$ and C4: $z \equiv_{15} 18$. Let z_j be the *smallest natnum* satisfying (C1) $\forall j$. Then

$z_2 =$; $z_3 =$; $z_4 =$

c LBolt: $\text{Gcd}(36, 90) =$ $\cdot 36 +$ $\cdot 90.$

So (LBolt again) $G := \text{Gcd}(36, 90, 15) =$ and $\cdot 36 +$ $\cdot 90 +$ $\cdot 15 = G.$

d Note $p := 137$ is prime. The (multiplicative) order of 18 mod 137 is .

[Hint: $p - 1$ has very few prime factors.]

e With $V := 12 + 10i$ and $D := 3 + 4i$, produce GIs $q =$ and $r =$ s.t $V = [Dq] + r$, with norm $\mathcal{N}(r) < \mathcal{N}(D)$. (Recall that $\mathcal{N}(x + yi) = x^2 + y^2$, when $x, y \in \mathbb{Z}$.)
[Hint: Mult. V and D by \overline{D} .]

f Bitstring “”0011111100101110” **001**”, via the Elias code, decodes to , a sequence of *natnums* [hint: gun-blip-blip], followed by noise-bits .

Conv, Elias(84)= (bitstring)

A5: Compute a Huffman code for these five symbols.

A: 4/27

B: 1/27

C: 14/27

D: 2/27

E: 6/27

When coalescing, use “0” to go to the smaller-prob. word.

And $\text{MECL}(\frac{4}{27}, \frac{1}{27}, \frac{14}{27}, \frac{2}{27}, \frac{6}{27}) =$ bits.

ii Give the example (with picture) from class of a minimum expected-length code which is not a Huffman code. Argue that your code is indeed of MECL, and is not Huffman.

iii State the Huffman Coding thm from class. Sketch a proof of it; just show the main ideas. (And pictures)

A6: Carefully state Hensel's lemma. (Do not prove it!)

B Let $f(x) := 2x^2 + 5x + 2$ and $z_0 := c_0 := 2$. Note $f(z_0) \equiv_5 0$. Note $f'(z_0) =$ $\not\equiv_5 0$.

Use Hensel's lemma repeatedly to compute coefficients $c_k \in [-2..2]$ (these are the blanks, below)

$$z_3 = \underbrace{c_0 \cdot 5^0 + \dots + \underbrace{c_1 \cdot 5^1}_{z_2} + \dots + \underbrace{c_2 \cdot 5^2}_{z_1} + \dots + \underbrace{c_3 \cdot 5^3}_{z_3}}$$

so that integers $z_k := \sum_{i=0}^k c_i 5^i$ satisfy

$$f(z_k) \equiv_{5^{k+1}} 0,$$

for $k = 1, 2, 3$. Show the update rule explicitly.

A-Home: 785pts

A4: 175pts

A5: 105pts

A6: 85pts

Total: 1150pts

Print name Ord:

HONOR CODE: “I have neither requested nor received help on this exam other than from my professor.”

Signature: