

Please. Do not approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\dots$. Use “ $f(x)$ notation” when writing funcs; in particular, for trig and log funcs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Write expressions unambiguously e.g., “ $1/a + b^2$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative** signs!)

PA1: Short answer: Show no work. Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a $M := \begin{bmatrix} 70 & 7 \\ 1 & 2 \end{bmatrix}$. Compute M^{-1} over these three fields.

Over \mathbb{Z}_5 : $M^{-1} = \underline{\dots\dots\dots}$.

Over \mathbb{Z}_7 : $M^{-1} = \underline{\dots\dots\dots}$. Over \mathbb{Q} : $M^{-1} = \underline{\dots\dots\dots}$.

b Let $M := \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$ and $B := \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$.

Then $M^{2005} = \underline{\dots\dots\dots}$ and $B^{2005} = \underline{\dots\dots\dots}$.

c Relative to the std basis on $\text{Poly}_{\leq 4}$, the differentiation operator has 4×4 matrix $\underline{\dots\dots\dots}$.

d $B := \begin{bmatrix} \sqrt{2} & 0 & -\sqrt{3} \\ 0 & -1 & 5 \end{bmatrix}$. Then $B^2 = \underline{\dots\dots\dots}$.

PA2: *Henceforth*, let **AT** mean “Always True”, **AF** mean “Always False” and **Nei** mean “Neither always true nor always false”. Below, $\mathbf{u}, \mathbf{v}, \mathbf{w}$ repr. distinct, non-zero vectors in \mathbb{R}^4 , a \mathbb{R} -VS. Please circle the correct response:

y1 If $\mathbf{w} \in \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT** **AF** **Nei**

y2 If $\mathbf{w} \notin \text{Span}\{\mathbf{u}, \mathbf{v}\}$ then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT** **AF** **Nei**

y3 Collection $\{\mathbf{0}, \mathbf{w}\}$ is linearly-indep. **AT** **AF** **Nei**

y4 $\text{Span}\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{u} + 2\mathbf{v} + 3\mathbf{w}\}$ is all of \mathbb{R}^4 . **AT** **AF** **Nei**

y5 If none of $\mathbf{u}, \mathbf{v}, \mathbf{w}$ is a multiple of the other vectors, then $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. **AT** **AF** **Nei**

PA2: Let $R := \frac{\sqrt{2}}{2} \cdot \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$. Then

$$R^{146} = \left[\begin{array}{c} \dots \\ \dots \\ \dots \\ \dots \end{array} \right].$$

[*Hint:* Think of the linear trn this matrix represents.]

PA3: A system of 3 equations in unknowns x_1, \dots, x_6 reduces to the augmented matrix $\left[\begin{array}{cccccc|c} 0 & 1 & 1 & 0 & 0 & 6 & -2 \\ 0 & 0 & 0 & 1 & 0 & -8 & -3 \\ 0 & 0 & 0 & 0 & 1 & 5 & -7 \end{array} \right]$. Write the *general soln* in **this form**, but using the correct number of free vars:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \alpha \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \beta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \gamma \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \delta \begin{bmatrix} ? \\ ? \\ ? \\ ? \\ ? \\ ? \end{bmatrix} + \dots$$

where each α, β, \dots is a free variable (either x_1 or...or x_6), and each column vector has specific numbers in it. The **number** of free variables is \dots .

PA4: On separate sheets of paper, write out the following sentences, and complete them to give the correct definitions. Be specific with phrases “every”, “some”, “there exists”, etc..

The **nullspace** of $T: \mathbf{V} \rightarrow \mathbf{W}$ is the set of all ...

A collection $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K\}$ is **linearly independent** IFF ...

A vector \mathbf{w} is in the **span** of $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_K\}$ IFF ...

An $N \times K$ matrix A is in **reduced row echelon form** IFF ...

End of PA-Practice

Filename: Classwork/LinearAlg/LinA2005t/a-cl-PRAC.
LinA2005t.latex
As of: Monday 31Aug2015. Typeset: 31Aug2015 at 10:16.