

Geometry
MTG3214 03H9

Prac-A

Prof. JLF King
3Sep2015

(This is much longer than the actual exam.)

OYOP: In grammatical English *sentences*, write your essay on every *third* line (usually), so that I can easily write between the lines. Do not restate the question.

For $n, k \in \mathbb{Z}$, let $n \perp k$ mean $\text{Gcd}(n, k) = 1$. Let **E.G** abbreviate Euclidean Geometry.

A1: Integers a, b, c form a Pythagorean triple, $a^2 + b^2 = c^2$. Suppose $a \not\perp b$. Prove that $b \not\perp c$.

A2: Show by explicit example that SAS does not hold in the taxicab geometry on \mathbb{R}^2 .

A3: In E.G, prove that the three angle-bisectors of $\triangle ABC$ intersect at a point; call it P . What is the name of this point?

A4: Carefully state the *Central-angle theorem* for a circle. *Prove* the *Central-angle thm*.

A5: State and prove the *Pythagorean theorem*.

A6: On a set Y , a *metric* \mathbf{m} is a map

\rightarrow such that \forall $\square \quad \square \quad \square$

MS1: $\square \dots \square \dots \square$

MS2: $\square \dots \square \dots \square$

MS3: $\square \dots \square \dots \square$

MS4: $\square \dots \square \dots \square$

A7: On \mathbb{R} -VS X , a *norm* $\|\cdot\|$ is a map \rightarrow

satisfying these three axioms. [Hint: Quantifiers.]

N1: $\square \dots \square \dots \square$

N2: $\square \dots \square \dots \square$

N3: $\square \dots \square \dots \square$

N4: $\square \dots \square \dots \square$

A8: Short answer. Show no work.

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

a Vertices $A := (8, 4), B := (-6, -2), C := (-2, -2)$ form a triangle T whose circum-center is (\square, \square) .

Also, $\text{Centroid}(T) = (\square, \square)$.

b A particular Pythagorean triple has $a^2 + 40^2 = c^2$, where $a = \square$ and $c = \square$.

c Let $\mathbf{v} := (3, -3, -1, 1, 2) \in \mathbb{R}^5$; so $\|\mathbf{v}\|_3 = \square$.

End of Prac-A

Please PRINT your *name* and *ordinal*. Ta:

Ord: $\square \dots \square \dots \square$

HONOR CODE: *"I have neither requested nor received help on this exam other than from my professor."*

Signature: $\square \dots \square \dots \square$