

Lin.Alg. Project 3 3114

Prof. J.L. King

The *First Order Estimate* project.

Suppose we have an $N \times 1$ vector \mathbf{b} and an $N \times N$ non-singular matrix A , but there is uncertainty in two of the entries of A . Then there is uncertainty in each of the N entries of the vector \mathbf{x} which solves the eqn.

$$A\mathbf{x} = \mathbf{b}.$$

Use the Method that I showed in class (using Cramer's Thm, P.196 of our text), to compute the uncertainty in each entry of \mathbf{x} .

Your program will take input like

```
firstorderest(A, b, [[2, 3], 0.01, [5, 7], 0.4])
```

This means that you've input a square non-singular matrix A . Suppose that its $[2, 3]$ entry, call it y , is 5. Then this means that y is *really* 5 ± 0.01 . Letting z denote A 's $[5, 7]$ entry, and supposing $z = -14$, then this means that z really equals -14 ± 0.4 .

Your program should check that A is square, is non-singular, and that its size N is large enough (in this case, N must be at least 7) for the following entries to be in the matrix. Your program should check that each uncertainty, the numbers 0.01 and 0.4, are non-negative.

When run, your program should print:

```
In the solution to Ax=b, here is the first
order uncertainty in each of the coordinates
of x.
```

```
x_1 equals <value> plus or minus <error>.
x_2 equals <value> plus or minus <error>.
...
x_N equals <value> plus or minus <error>.
```

To compute the value and error associated with, say, x_2 , do the following: Directly solve $A\mathbf{x} = \mathbf{b}$ (just use a Maple command). Now use Cramer's rule, as we did in class, to write

$$x_2 = \det(A_2(\mathbf{b})) / \det(A). \quad (\text{E1})$$

Now regard both $A_2(\mathbf{b})$ and A as functions of the values in positions y and z . Compute the partial derivatives

$$\frac{\partial x_2}{\partial y} \quad \text{and} \quad \frac{\partial x_2}{\partial z}$$

(Use Maple's differentiation command, applied to the righthand side of (E1)).

Then the first-order error in x_2 is the sum

$$(0.01) \cdot \left| \frac{\partial x_2}{\partial y} \right| + (0.4) \cdot \left| \frac{\partial x_2}{\partial z} \right|.$$

Last comment. Do read your email for an update.

Filename: `P3-project.LinC1998g.ams.tex`
As of: *Wed Apr 15, 1998* Typeset: *6September2015*