

Please. Use “ $f(x)$ notation” when writing fncs; in particular, for trig and log fncs. E.g., write “ $\sin(x)$ ” rather than the horrible $\sin x$ or $[\sin x]$. Do **not** approx.: If your result is “ $\sin(\sqrt{\pi})$ ” then write that rather than $.9797\cdots$. Write expressions unambiguously e.g., “ $1/a + b$ ” should be bracketed either $[1/a] + b$ or $1/[a + b]$. (Be careful with **negative signs!**)

Please write **DNE** in a blank if the described object does not exist or if the indicated operation cannot be performed.

P1: Show no work.

[z] What is a polar bear? Answer:

A rectangular bear after a coordinate transform.

[a] The **slope** of line $3[y - 5] = 2[x - 1]$ is

Point $(4, y)$ lies on this line, where $y =$

[b] The solutions to $3z^2 = 1 - z$
are $z =$

[c] $[\sqrt{3}^{\sqrt{2}}]^{\sqrt{8}} =$ $\log_8(4) =$

[d] Let $B(x) := x^x$. Its derivative, then, is
 $B'(x) =$
[Hint: How is x^x defined ITOf the exponential fnc?]

[e] For fnc $y = h(x) := [5 + \sqrt[3]{x}]/2$, its inverse fnc is $h^{-1}(y) =$

[f] Suppose g is a fnc with g' never zero. Let h be the inverse fnc of g . In terms of h , g and g' , write a formula for $h'(x) =$
[Hint: The Chain rule.]

[f*] Let $g(x) := x^3 + x$. Then $g^{-1}(10) =$
and $[g^{-1}]'(10) =$

[g] Compute the sum of this geometric series:
 $\sum_{n=0}^{\infty} [-1]^n \cdot [3/5]^n =$

[h] The series $\sum_{k=1}^{\infty} \frac{[-1]^k}{\ln(k)}$ (circle one): Diverges,

Converges absolutely,

Converges conditionally.

[i] The **radius of convergence** of power series $\sum_{n=0}^{\infty} \frac{[3x]^n}{n+7}$ is: $\text{RoC} =$

End of P-Prereq

P1: 110pts

Total: 110pts

Print
name

Ord:

HONOR CODE: *I have neither requested nor received help on this exam other than from my professor.*

Signature: